Name
Physics 110 Quiz \#5, October 26, 2011
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. The figure below shows three small point mass spheres that rotate about a vertical axis. The perpendicular distance between the axis and the center of each sphere is given. Which of the following must be true if the moments of inertia? (Hint, the rods connecting the spheres to the rotation axis have no mass.)

a. $I_{1}=I_{2}=I_{3}$
b. $I_{1}<I_{2}<I_{3}$
c. $I_{1}=I_{2}<I_{3}$
d. $I_{1}>I_{2}=I_{3}$
2. The masseter muscle is one of the muscles involved in the process of chewing. Measurements indicate that the masseter muscle exerts an upward force of 250 N at a distance of 2.5 cm from the pivot, called the temporomandibular joint (TMJ). If the linear distance between the $T M J$ and the molar is 4.8 cm , what magnitude of force (in pounds, where $1 N=1 / 4 \mathrm{lb}$) does your molar exert on food during the chewing process?

$$
\begin{aligned}
& \sum \tau: r_{\text {molar }} F_{\text {molar }}-r_{\text {masseter }} F_{\text {masseter }}=0 \\
& \rightarrow r_{\text {molar }} F_{\text {molar }}=r_{\text {masseter }} F_{\text {masseter }} \\
& \therefore F_{\text {molar }}=\frac{r_{\text {masseter }}}{r_{\text {molar }}} F_{\text {masseter }}=\frac{2.5 \mathrm{~cm}}{4.8 \mathrm{~cm}} 250 \mathrm{~N}=130 \mathrm{~N}
\end{aligned}
$$

3. Suppose that we have the set-up shown below consisting of a shaft of radius $r_{\text {shaft }}=$ 0.5 cm around which a massless string is wound and a disk of moment of inertial I is placed. The string is passed over a massless pulley where a mass $m_{h}=200 \mathrm{~g}$ is hung and allowed to fall from rest through a height $h=1 \mathrm{~m}$ acquiring a speed of $v=$ $1.84 \mathrm{~m} / \mathrm{s}$. Using conservation of energy, what is the moment of inertia of the disk?

$$
\begin{aligned}
& \Delta K E_{T}+\Delta K E_{R}+\Delta U_{g}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} I \omega_{f}^{2}-m g y_{i}=0 \\
& I=\left(\frac{2 g y_{i}}{v_{f}^{2}}-1\right) m_{h} R_{s h}^{2}=\left(\frac{2 \times 9.8 \frac{m}{s^{2}} \times 1 \mathrm{~m}}{\left(1.84 \frac{m}{s}\right)^{2}}-1\right) \times 0.2 \mathrm{~kg} \times(0.005 \mathrm{~m})^{2}=2.4 \times 10^{-5} \mathrm{kgm}^{2}
\end{aligned}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathbf{y}$ or \mathbf{z}-directions

$$
\begin{aligned}
& r_{f}=r_{i}+v_{i r} t+\frac{1}{2} a_{r} t^{2} \\
& v_{f r}=v_{i r}+a_{r} t \\
& v_{f r}^{2}=v_{i r}^{2}+2 a_{r} \Delta r
\end{aligned}
$$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$F_{r}=m a_{r}=m \frac{v^{2}}{r}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}}$

Geometry/Algebra

Circles	Triangles	Spheres
$C=2 \pi r$	$A=\frac{1}{2} b h$	$A=4 \pi r^{2}$
$A=\pi r^{2}$		$V=\frac{4}{3} \pi r^{3}$

Quadratic equation: $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Vectors Useful Constants
magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of avector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$N_{A}=6.02 \times 10^{23}$ atoms $/$ mole $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}^{2}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$

Heat
$K_{t}=\frac{1}{2} m v^{2}$
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$K_{r}=\frac{1}{2} I \omega^{2}$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$
$\Delta U=\Delta Q-\Delta W$
Simple Harmonic Motion/Waves

$$
\begin{aligned}
& \omega=2 \pi f=\frac{2 \pi}{T} \\
& T_{S}=2 \pi \sqrt{\frac{m}{k}} \\
& T_{P}=2 \pi \sqrt{\frac{l}{g}} \\
& v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
x(t)=A \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$I=2 \pi^{2} f^{2} \rho v A^{2}$

