Name
Physics 110 Quiz \#5, May 14, 2010
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. A 1200 kg car (traveling at $25 \mathrm{~m} / \mathrm{s}$) makes a rear-end collision with a 9000 kg van (traveling in the same direction as the car and at a speed of $20 \mathrm{~m} / \mathrm{s}$). After the collision the car is found to be traveling at $18 \mathrm{~m} / \mathrm{s}$ and the van at an unknown speed, but with both traveling in their original directions after the collision. The car and the van are not connected after the collision. The speed of the van after the collision and the collision itself are
a. $20.9 \mathrm{~m} / \mathrm{s}$ and elastic.
b. $22.1 \mathrm{~m} / \mathrm{s}$ and elastic.
c. $20.9 \mathrm{~m} / \mathrm{s}$ and inelastic.
d. $22.1 \mathrm{~m} / \mathrm{s}$ and inelastic.

2. The sun orbits the center of the galaxy at a distance of $2.37 \times 10^{20} \mathrm{~m}$ with an average orbital speed of $228 \mathrm{~km} / \mathrm{s}$.
a. Assuming that our galaxy, the Milky Way, is considered a solid disk with the sun seated at the outer edge of the galaxy (it's not by the way), what is the angular velocity of the of the galaxy?

$$
\omega=\frac{v}{r}=\frac{228 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}}{2.37 \times 10^{20} \mathrm{~m}}=9.6 \times 10^{-16} \frac{\mathrm{rad}}{\mathrm{~s}}
$$

b. Starting from the trajectory for the sun's motion about the center of the galaxy and assuming that the angular velocity is a constant, determine the number of earth years in a galactic year. A galactic year is the time it takes for the earth to make one complete orbit about the galactic center.

$$
\begin{aligned}
& \theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} \rightarrow t=\frac{\theta_{f}-\theta_{i}}{\omega_{i}}=\frac{2 \pi}{9.6 \times 10^{-16} s^{-1}}=6.53 \times 10^{15} \mathrm{~s} \\
& t_{\text {galactic year }}=6.53 \times 10^{15} \mathrm{~s} \times \frac{1 \text { Earth year }}{31.5 \times 10^{6} \mathrm{~s}}=207 \times 10^{6} \text { Earth yrs }=207 \mathrm{M} \text { Eath yrs }
\end{aligned}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathrm{y}$ or z -directions
$r_{f}=r_{0}+v_{0 r} t+\frac{1}{2} a_{r} t^{2}$
$v_{f r}=v_{0 r}+a_{r} t$
$v_{f r}^{2}=v_{0 r}^{2}+2 a_{r} \Delta r$

Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$\begin{array}{llcc}r & \text { Circles } & \text { Triangles } & \text { Spheres } \\ F_{r}=m a_{r}=m \frac{v^{2}}{r} & \begin{array}{l}\text { C=2 } \pi r \\ A=\pi r^{2}\end{array} & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ v=\frac{2 \pi r}{T} & & V=\frac{4}{3} \pi r^{3}\end{array}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad$ whose solutions are given by $: x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Geometry/Algebra

Useful Constants
magnitude of avector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$
Linear Momentum/Forces
Work/Energy
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
$N_{A}=6.02 \times 10^{23} \mathrm{atoms} /$ mole $\quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4} \quad v_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}$
$K_{t}=\frac{1}{2} m v^{2}$

Heat
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho \nu^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho \nu^{2}{ }_{2}+\rho g h_{2}$
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$
Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$
Sound

Simple Harmonic Motion/Waves

$$
\omega=2 \pi f=\frac{2 \pi}{T}
$$

$$
\begin{aligned}
& P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4} \\
& \Delta U=\Delta Q-\Delta W
\end{aligned}
$$

$$
T_{S}=2 \pi \sqrt{\frac{m}{k}}
$$

$$
T_{P}=2 \pi \sqrt{\frac{l}{g}}
$$

$$
v= \pm \sqrt{\frac{k}{m}} A\left(1-\frac{x^{2}}{A^{2}}\right)^{\frac{1}{2}}
$$

$$
x(t)=A \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v(t)=A \sqrt{\frac{k}{m}} \cos \left(\frac{2 \pi}{T}\right)
$$

$$
a(t)=-A \frac{k}{m} \sin \left(\frac{2 \pi}{T}\right)
$$

$$
v=f \lambda=\sqrt{\frac{F_{T}}{\mu}}
$$

$$
f_{n}=n f_{1}=n \frac{v}{2 L}
$$

$$
I=2 \pi^{2} f^{2} \rho v A^{2}
$$

