Name
Physics 110 Quiz \#6, May 21, 2010
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. Given the diagram on the right, three forces are applied on a piston of area A_{l}. This force is used to suspend the load on the right piston in each picture. The areas of the remaining pistons are each A_{2} and the masses are in kg . From the diagram it can be concluded that
a. $\mathrm{F}_{1}=\mathrm{F}_{2}=\mathrm{F}_{3}$
b. $\mathrm{F}_{1}<\mathrm{F}_{2}=\mathrm{F}_{3}$
c. $\mathrm{F}_{1}>\mathrm{F}_{2}>\mathrm{F}_{3}$
d. $\mathrm{F}_{1}=\mathrm{F}_{3}<\mathrm{F}_{2}$

2. Suppose that you are given the following apparatus in which you want to experimentally determine the moment of inertia of an irregularly shaped object. A hanging mass $m=200 \mathrm{~g}$ is suspended from a rope that is passed over a frictionless, masslesss pulley and attached to a shaft of radius $r=1 / 2 \mathrm{~cm}$. The hanging mass m is released from rest and falls a distance of $\Delta y=1 \mathrm{~m}$ in a time of $1 s$.

a. Using Newton's $2^{\text {nd }}$ Law of motion in rotational form, what is the moment of inertia of the object on the platform?

$$
\begin{aligned}
& \tau=I \alpha \rightarrow r F_{T}=I \frac{a}{r} \\
& F_{T}-m_{h} g=-m_{h} a \rightarrow F_{T}=m_{h} g-m_{h} a \\
& y_{f}=y_{i}+v_{i y} t-\frac{1}{2} a t^{2} \rightarrow a=\frac{2\left(y_{f}-y_{i}\right)}{t^{2}}=\frac{2 \times 1 \mathrm{~m}}{1 s^{2}}=2 \frac{m}{s^{2}} \\
& \therefore I=\frac{r^{2}\left(m_{h} g-m_{h} a\right)}{a}=\left(\frac{g}{a}-1\right) m_{h} r^{2}=\left(\frac{9.8 \frac{m}{s^{2}}}{2 \frac{m^{2}}{s^{2}}}-1\right) \times 0.2 \mathrm{~kg} \times(0.005 \mathrm{~m})^{2}=1.95 \times 10^{-5} \mathrm{kgm}^{2}
\end{aligned}
$$

b. Using conservation of energy ideas, what is the moment of inertial of the object on the platform?

$$
\begin{aligned}
& \Delta E_{\text {Toall }=\Delta U_{g}+\Delta K E_{T}+\Delta K E_{R}=\left(m_{h} g y_{f}-m_{h} g y_{i}\right)+\left(\frac{1}{2} m_{h} v_{f}^{2}-\frac{1}{2} m_{h} v_{i}^{2}\right)+\left(\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}\right)=0}^{v_{f}=r \omega_{f} \rightarrow \omega_{f}=\frac{v_{f}}{r} ; v_{f}^{2}=v_{i}^{2}+2 a y_{i}=2 a y_{i}} \\
& -m_{h} g y_{i}+\frac{1}{2} m_{h} v_{f}^{2}+\frac{1}{2} r\left(\frac{v_{f}}{r}\right)^{2}=0 \\
& \therefore I=\left(\frac{g}{a}-1\right) m_{h} r^{2}=1.95 \times 10^{-5} \mathrm{kgm}^{2}
\end{aligned}
$$

Useful formulas:

Motion in the $\mathbf{r}=\mathbf{x}, \mathbf{y}$ or \mathbf{z}-directions
Uniform Circular Motion
$a_{r}=\frac{v^{2}}{r}$
$\begin{array}{cccc}r & \text { Circles } & \text { Triangles } & \text { Spheres } \\ F_{r}=m a_{r}=m \frac{v^{2}}{r} & \begin{array}{l}\text { Tran } \\ \\ \\ A=\pi r^{2}\end{array} & A=\frac{1}{2} b h & A=4 \pi r^{2} \\ V=\frac{4}{3} \pi r^{3}\end{array}$
$v=\frac{2 \pi r}{T}$
$F_{G}=G \frac{m_{1} m_{2}}{r^{2}} \quad$ whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
magnitude of avector $=\sqrt{v_{x}{ }^{2}+v^{2} y}$
direction of avector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

$$
\begin{aligned}
& g=9.8 \mathrm{~m} / \mathrm{s} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
& N_{A}=6.02 \times 10^{23} \text { atoms } / \text { mole } \\
& \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} K^{4}
\end{aligned} \quad k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \text { ound }=343 \mathrm{~m} / \mathrm{s} .
$$

Linear Momentum/Forces
$\vec{p}=m \vec{v}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F} \Delta t$
$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \vec{x}$
$F_{f}=\mu F_{N}$

Work/Energy
$K_{t}=\frac{1}{2} m v^{2}$
$K_{r}=\frac{1}{2} I \omega^{2}$
$U_{g}=m g h$
$U_{S}=\frac{1}{2} k x^{2}$
$W_{T}=F d \operatorname{Cos} \theta=\Delta E_{T}$
$W_{R}=\tau \theta=\Delta E_{R}$
$W_{n e t}=W_{R}+W_{T}=\Delta E_{R}+\Delta E_{T}$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=0$
$\Delta E_{R}+\Delta E_{T}+\Delta U_{g}+\Delta U_{S}=-\Delta E_{\text {diss }}$

Heat
$T_{C}=\frac{5}{9}\left[T_{F}-32\right]$
$T_{F}=\frac{9}{5} T_{C}+32$
$L_{\text {new }}=L_{\text {old }}(1+\alpha \Delta T)$
$A_{\text {new }}=A_{\text {old }}(1+2 \alpha \Delta T)$
$V_{\text {new }}=V_{\text {old }}(1+\beta \Delta T): \beta=3 \alpha$
$P V=N k_{B} T$
$\frac{3}{2} k_{B} T=\frac{1}{2} m v^{2}$
$\Delta Q=m c \Delta T$
$P_{C}=\frac{\Delta Q}{\Delta t}=\frac{k A}{L} \Delta T$
$P_{R}=\frac{\Delta Q}{\Delta T}=\varepsilon \sigma A \Delta T^{4}$

$$
\Delta U=\Delta Q-\Delta W
$$

Rotational Motion
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega^{2}{ }_{f}=\omega^{2}{ }_{i}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F$
$L=I \omega$
$L_{f}=L_{i}+\tau \Delta t$
$\Delta s=r \Delta \theta: v=r \omega: a_{t}=r \alpha$
$a_{r}=r \omega^{2}$

Sound
$v=f \lambda=(331+0.6 T) \frac{m}{s}$
$\beta=10 \log \frac{I}{I_{0}} ; \quad I_{o}=1 \times 10^{-12} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$f_{n}=n f_{1}=n \frac{v}{2 L} ; f_{n}=n f_{1}=n \frac{v}{4 L}$

Fluids
$\rho=\frac{M}{V}$
$P=\frac{F}{A}$
$P_{d}=P_{0}+\rho g d$
$F_{B}=\rho g V$
$A_{1} v_{1}=A_{2} v_{2}$
$\rho_{1} A_{1} v_{1}=\rho_{2} A_{2} v_{2}$
$P_{1}+\frac{1}{2} \rho v^{2}{ }_{1}+\rho g h_{1}=P_{2}+\frac{1}{2} \rho v^{2}{ }_{2}+\rho g h_{2}$

