Name \qquad
Physics 111 Quiz \#1, September 14, 2018
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Suppose that you have two point charges in a line given by the following data; charge $q_{1}=5 \mu C$ is located at $(x, y)=(-5,0) c m$ and charge $q_{2}=10 \mu C$ is located at $(x, y)=(5,0) \mathrm{cm}$.

1. What is the x -component of the net electric field at a point P in space with coordinates $(x, y)=(0,-10) \mathrm{cm}$?

The distance between each charge and point P is given by: $r=\sqrt{(0.05 m)^{2}+(-0.1 m)^{2}}=0.11 \mathrm{~m}$.
From the geometry of the system: $\cos \theta=\frac{0.05 m}{0.11 m}=0.455$ and $\sin \theta=\frac{0.1 m}{0.11 m}=0.909$.
The x -component of the electric field:

$$
\left.\begin{array}{l}
E_{\text {net }, x}=E_{1} \cos \theta-E_{2} \cos \theta=\frac{k q_{1}}{r^{2}} \cos \theta-\frac{k q_{2}}{r^{2}} \cos \theta=\frac{k \cos \theta}{r^{2}}\left(q_{1}-q_{2}\right) \\
E_{\text {net }, x}=\frac{9 \times 10^{9} \frac{\mathrm{Nm}}{} \mathrm{C}^{2}}{\mathrm{C}^{2}} \times 0.455 \\
(0.11 \mathrm{~m})^{2} \\
\hline
\end{array} 5 \times 10^{-6} C-10 \times 10^{-6} C\right)=-1.69 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{C}}
$$

2. What is the y-component of the net electric field at a point P in space with coordinates $(x, y)=(0,-10) \mathrm{cm}$?

The y-component of the electric field:

$$
\begin{aligned}
& E_{\text {net }, y}=-E_{1} \sin \theta-E_{2} \sin \theta=-\frac{k q_{1}}{r^{2}} \sin \theta-\frac{k q_{2}}{r^{2}} \sin \theta=-\frac{k \cos \theta}{r^{2}}\left(q_{1}+q_{2}\right) \\
& E_{\text {net, },}=-\frac{9 \times 10^{9} \frac{N m^{2}}{\mathrm{C}^{2}} \times 0.909}{(0.11 \mathrm{~m})^{2}}\left(5 \times 10^{-6} \mathrm{C}+10 \times 10^{-6} \mathrm{C}\right)=-1.01 \times 10^{7} \frac{\mathrm{~N}}{\mathrm{C}}
\end{aligned}
$$

3. What is the net electric field at the point P in space with coordinates $(x, y)=(0,-10) \mathrm{cm}$?

The magnitude of the net electric field: $E_{n e t}=\sqrt{E_{\text {net }, x}^{2}+E_{\text {net }, x}^{2}}=1.02 \times 10^{7} \frac{\mathrm{~N}}{\mathrm{C}}$.
The direction of the net electric field: $\phi=\tan ^{-1}\left(\frac{E_{n e t, y}}{E_{n e t, x}}\right)=80.5^{\circ}$ below the-x-axis.
4. Suppose that a point charge $q_{3}=-3.6 \mu C$ is placed at point P in space, what net electric force would q_{3} feel due to q_{1} and q_{2} ?

The magnitude of the net electric force: $F_{n e t}=q_{3} E_{n e t}=3.6 \times 10^{-6} \mathrm{C} \times 1.02 \times 10^{7} \frac{\mathrm{~N}}{\mathrm{C}}=36.7 \mathrm{~N}$.
The direction of the net electric field: $\phi=\tan ^{-1}\left(\frac{q_{3} E_{\text {net }, y}}{q_{3} E_{\text {net }, x}}\right)=80.5^{\circ}$ above the +x -axis, opposite to the direction of the electric filed
5. Suppose that the point charges q_{1} and q_{2} were moved so that their new locations were $(x, y)=(-10,0) c m$ and $(x, y)=(10,0) c m$ respectively. In this new configuration the net electric force on q_{3} would
a. decrease because the distance between q_{1} and q_{2} and the point P increases.
b. decrease because the distance between q_{1} and q_{2} and the point P decreases.
c. remain the same.
d. increase because the distance between q_{1} and q_{2} and the point P increases.
e. increases because the distance between q_{1} and q_{2} and the point P decreases.

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W=-q \Delta V_{f, i}
\end{aligned}
$$

Magnetic Forces and Fields

$$
\begin{aligned}
& F=q \nu B \sin \theta \\
& F=I l B \sin \theta \\
& \tau=N I A B \sin \theta=\mu B \sin \theta \\
& P E=-\mu B \cos \theta \\
& B=\frac{\mu_{0} I}{2 \pi r} \\
& \varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}
\end{aligned}
$$

Constants

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm} m^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{~N} m^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C} \\
& Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) \\
& Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}} \\
& C_{\text {parallel }}=\sum_{i=1}^{N} C_{i} \\
& \frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
\end{aligned}
$$

Light as a Particle \& Relativity

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{s t o p} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{r e s t}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2}
\end{aligned}
$$

$$
K E=(\gamma-1) m c^{2}
$$

Geometry
Circles: $C=2 \pi r=\pi D \quad A=\pi r^{2}$
Triangles: $A=\frac{1}{2} b h$
Spheres: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

Light as a Wave
$c=f \lambda=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}$
$S(t)=\frac{\text { energy }}{\text { time } \times \text { area }}=c \varepsilon_{o} E^{2}(t)=c \frac{B^{2}(t)}{\mu_{0}}$
$I=S_{\text {avg }}=\frac{1}{2} c \varepsilon_{o} E_{\text {max }}^{2}=c \frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$P=\frac{S}{c}=\frac{\text { Force }}{\text { Area }}$
$S=S_{o} \cos ^{2} \theta$
$v=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{n}$
$\theta_{\text {inc }}=\theta_{\text {refl }}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
$M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
$M_{\text {total }}=\prod_{i=1}^{N} M_{i}$
$S_{\text {out }}=S_{\text {in }} e^{-\sum_{i} \mu_{x} x_{i}}$
$H U=\frac{\mu_{w}-\mu_{m}}{\mu_{w}}$

Nuclear Physics
$E_{\text {binding }}=\left(Z m_{p}+N m_{n}-m_{r e s t}\right) c^{2}$
$\frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t}$
$A(t)=A_{o} e^{-\lambda t}$
$m(t)=m_{o} e^{-\lambda t}$
$t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$
Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{\text {gravity }}=m g y$
$P E_{\text {spring }}=\frac{1}{2} k y^{2}$
$|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$\vec{x}_{f}=\vec{x}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}$

