Name \qquad
Physics 111 Quiz \#2, September 21, 2018
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

A capacitor is made out of two metal plates with their faces parallel to each other. The plates are made out of copper and are circular (each with a diameter of 20 cm) and are separated by a 1.0 cm thick piece of rubber ($\kappa=2.8$).
a. What is the capacitance of the system and how much charge flows onto a plate if the capacitor is connected to a 100 V battery?

$$
\begin{aligned}
& C=\frac{\kappa \varepsilon_{0} A}{d}=\frac{2.8 \times 8.85 \times 10^{-12} \frac{C^{2}}{N m^{2}} \times \pi(0.1 \mathrm{~m})^{2}}{0.01 \mathrm{~m}}=7.8 \times 10^{-11} \mathrm{~F} \\
& Q=C V=7.8 \times 10^{-11} \mathrm{~F} \times 100 \mathrm{~V}=7.8 \times 10^{-9} \mathrm{C}=7.8 \mathrm{nC}
\end{aligned}
$$

b. If the capacitor were charged using a 1000Ω resistor and the 100 V battery, what would be the magnitude and direction of the electric field between the capacitor plates when fully charged?
$|\vec{E}|-\frac{\Delta V}{\Delta x} \left\lvert\,=\frac{100 \mathrm{~V}}{0.01 \mathrm{~m}}=10000 \frac{\mathrm{~V}}{\mathrm{~m}}\right.$ and the field points from the positive plate towards the negative plate.
c. Suppose that you remove the rubber from between the capacitor plates (while the battery is still connected) and then you drill a small hole in the rightmost plate. The rightmost plate is connected to the negative terminal of the battery while the leftmost plate is connected to the positive terminal of the battery. A carbon ion $\left({ }_{6}^{12} C^{+}\right)$is released from rest near the positively charged plate opposite the hole. What is the speed of the carbon ion when it passes through the hole?

$$
\begin{aligned}
& W=-q \Delta V=-(e)[0 \mathrm{~V}-100 \mathrm{~V}]=100 \mathrm{eV} \times \frac{1.6 \times 10^{-17} \mathrm{~J}}{1 \mathrm{eV}}=1.6 \times 10^{-19} \mathrm{~J} \\
& W=\Delta K=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2}=\frac{1}{2} m v_{f}^{2} \\
& \rightarrow v_{f}=\sqrt{\frac{2 W}{m}}=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \mathrm{~J}}{6 \times(1.67+1.69) \times 10^{-27} \mathrm{~kg}}}=4 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

d. From the time the carbon ion was released from rest until it passes through the hole, which of the following is true?

1. The $\triangle E P E \uparrow$ and the $\Delta K \downarrow$.
2. The $\triangle E P E \uparrow$ and the $\Delta K \uparrow$.
3. The $\triangle E P E=0$ and the $\Delta K=0$.
4. The $\triangle E P E \downarrow$ and the $\Delta K \downarrow$.
(5.) The $\triangle E P E \downarrow$ and the $\Delta K \uparrow$.
e. Suppose that you wanted the carbon ion to just touch a platinum nucleus. If the carbon ion were initially very far away from the platinum nucleus, through what potential difference (different than in part c) would you need to accelerate the carbon ion? Hints: Assume that the nuclear radii of carbon and platinum are $r_{C}=2.7 \times 10^{-15} \mathrm{~m}$ and $r_{P t}=5.4 \times 10^{-15} \mathrm{~m}$ respectively and that the spectroscopic information of platinum is ${ }_{78}^{195} \mathrm{Pt}$.
$W=-q \Delta V_{a c c}=-q\left[\frac{k Q_{P_{t}}}{r_{P_{t}}+r_{C}}-\frac{k Q_{P t}}{r_{i}}\right]$
$\rightarrow \Delta V_{\text {acc }}=\frac{k Q_{P_{t}}}{r_{P t}+r_{C}}=\frac{9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \times 78 \times 1.6 \times 10^{-19} \mathrm{C}}{(2.7+5.4) \times 10^{-15} \mathrm{~m}}=1.4 \times 10^{7} \mathrm{~V}=14 \mathrm{MV}$

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W=-q \Delta V_{f, i}
\end{aligned}
$$

Magnetic Forces and Fields

$$
\begin{aligned}
& F=q \nu B \sin \theta \\
& F=I l B \sin \theta \\
& \tau=N I A B \sin \theta=\mu B \sin \theta \\
& P E=-\mu B \cos \theta \\
& B=\frac{\mu_{0} I}{2 \pi r} \\
& \varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}
\end{aligned}
$$

Constants

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{Nm}}{\mathrm{C}^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{N m^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{JS}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C} \\
& Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) \\
& Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}} \\
& C_{\text {parallel }}=\sum_{i=1}^{N} C_{i} \\
& \frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
\end{aligned}
$$

Light as a Particle \& Relativity

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{\text {stop }} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{r e s t}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2} \\
& K E=(\gamma-1) m c^{2}
\end{aligned}
$$

Geometry

Circles: $C=2 \pi r=\pi D \quad A=\pi r^{2}$
Triangles: $A=\frac{1}{2} b h$
Spheres: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$

Light as a Wave
$c=f \lambda=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}$
$S(t)=\frac{\text { energy }}{\text { time } \times \text { area }}=c \varepsilon_{o} E^{2}(t)=c \frac{B^{2}(t)}{\mu_{0}}$
$I=S_{\text {avg }}=\frac{1}{2} c \varepsilon_{o} E_{\text {max }}^{2}=c \frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$P=\frac{S}{c}=\frac{\text { Force }}{\text { Area }}$
$S=S_{o} \cos ^{2} \theta$
$v=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{n}$
$\theta_{\text {inc }}=\theta_{\text {refl }}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
$M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
$M_{\text {total }}=\prod_{i=1}^{N} M_{i}$
$S_{\text {out }}=S_{\text {in }} e^{-\sum_{i} \mu_{x} x_{i}}$
$H U=\frac{\mu_{w}-\mu_{m}}{\mu_{w}}$

Nuclear Physics

$$
\begin{aligned}
& E_{\text {bind ing }}=\left(Z m_{p}+N m_{n}-m_{r ब t}\right) c^{2} \\
& \frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t} \\
& A(t)=A_{o} e^{-\lambda t} \\
& m(t)=m_{o} e^{-\lambda t} \\
& t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}
\end{aligned}
$$

Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{\text {gravity }}=m g y$
$P E_{\text {spring }}=\frac{1}{2} k y^{2}$
$|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$\vec{x}_{f}=\vec{x}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}$

