Name \qquad
Physics 111 Quiz \#5, October 24, 2018
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.
a. Suppose that you have a 100 W light bulb. At a distance of $r=1 \mathrm{~m}$ from the light bulb, what is the maximum amplitude of the electric field?

$$
\begin{aligned}
& S=\frac{P}{A}=\frac{P}{4 \pi r^{2}}=\frac{1}{2} c \varepsilon_{0} E_{\max }^{2} \\
& \rightarrow E_{\max }=\sqrt{\frac{P}{2 \pi c \varepsilon_{0} r^{2}}}=\sqrt{\frac{100 \mathrm{~W}}{2 \pi \times 3 \times 10^{8} \frac{\mathrm{~m}}{s} \times 8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \times(1 \mathrm{~m})^{2}}}=77.4 \frac{\mathrm{~N}}{\mathrm{C}}
\end{aligned}
$$

b. Suppose that you have a source of horizontally polarized light. How many polarizers would be needed to rotate the polarization of this light so that it is vertical and a maximum in intensity?

1. One oriented at 90° to the incident light.
2. Two, each oriented 45° to the other.

3 Three, each oriented at 30° to the other.
4. As many as you can find.
5. No number of polarizers can accomplish this.
c. Green laser light with wavelength $\lambda=550 \mathrm{~nm}$ is incident at $\theta_{\text {in }}=52^{\circ}$ on a triangular piece of glass as shown below. The index of refraction of the glass is $n_{g}=1.5$ and the piece of glass is cut into an equilateral triangle. At what angle $\theta_{\text {out }}$ does the light emerge on the right side of the glass?
$n_{a} \sin \theta_{i n}=n_{g} \sin \theta_{2} \rightarrow \theta_{2}=\sin ^{-1}\left(\frac{1.0}{1.5} \sin 52\right)=31.7^{0}$
$\theta_{2}+\alpha=90 \rightarrow \alpha=58.3^{0}$

$\alpha+\beta+60=180 \rightarrow \beta=61.7^{0}$
$\theta_{3}+\beta=90 \rightarrow \theta_{3}=28.3^{0}$
$n_{g} \sin \theta_{3}=n_{a} \sin \theta_{\text {out }} \rightarrow \theta_{\text {out }}=\sin ^{-1}\left(\frac{1.5}{1.0} \sin 28.3\right)=45.3^{\circ}$
d. A converging lens is to be used in a projector to view the motion of a bacterium in dish on a screen in the front of a room. If the speed of the bacterium in the dish is $14 \frac{\mathrm{~cm}}{\mathrm{~s}}$ on the screen, what is the speed of the bacterium in the dish? Assume that the lens to screen distance is 3.0 m and the lens to bacterium in the dish distance is 1.2 cm .

$$
M=\frac{d_{i}}{d_{o}}=\frac{h_{i} / t}{h_{o} / t}=\frac{v_{i}}{v_{o}} \rightarrow v_{o}=\left(\frac{d_{o}}{d_{i}}\right) v_{i}=\left(\frac{1.2 \mathrm{~cm}}{300 \mathrm{~cm}}\right) 14 \frac{\mathrm{~cm}}{\mathrm{~s}}=0.056 \frac{\mathrm{~cm}}{\mathrm{~s}}=0.56 \frac{\mathrm{~mm}}{\mathrm{~s}}
$$

e. A screen and an object are placed a fixed distance $D=0.5 m$ apart. At what location(s) can a converging lens with focal length $f_{c}=4.8 \mathrm{~cm}$ be placed between the object and screen to produce a sharp image?

$$
\begin{aligned}
& \frac{1}{f_{c}}=\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{d_{o}}+\frac{1}{D-d_{o}}=\frac{D}{d_{o}\left(D-d_{o}\right)} \rightarrow D f_{c}=D d_{o}-d_{o}^{2} \\
& \rightarrow d_{o}^{2}-D d_{o}+D f_{c}=0
\end{aligned} d_{o}=\frac{D \pm \sqrt{D^{2}-4 D f_{c}}}{2}=\frac{D}{2}\left(1 \pm \sqrt{1-\frac{4 f_{c}}{D}}\right)=\frac{0.5 m}{2}\left(1 \pm \sqrt{1-\frac{4 \times 4.8 \mathrm{~cm}}{50 \mathrm{~cm}}}\right) .
$$

Physics 111 Equation Sheet

Electric Forces, Fields and Potentials

$$
\begin{aligned}
& \vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} \\
& \vec{E}=\frac{\vec{F}}{q} \\
& \vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r} \\
& P E=k \frac{Q_{1} Q_{2}}{r} \\
& V(r)=k \frac{Q}{r} \\
& E_{x}=-\frac{\Delta V}{\Delta x} \\
& W=-q \Delta V_{f, i}
\end{aligned}
$$

Magnetic Forces and Fields

$$
\begin{aligned}
& F=q \nu B \sin \theta \\
& F=I l B \sin \theta \\
& \tau=N I A B \sin \theta=\mu B \sin \theta \\
& P E=-\mu B \cos \theta \\
& B=\frac{\mu_{0} I}{2 \pi r} \\
& \varepsilon_{\text {induced }}=-N \frac{\Delta \phi_{B}}{\Delta t}=-N \frac{\Delta(B A \cos \theta)}{\Delta t}
\end{aligned}
$$

Constants

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{Nm}}{\mathrm{C}^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{N m^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}_{\mathrm{m}}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{JS}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

Electric Circuits

$$
\begin{aligned}
& I=\frac{\Delta Q}{\Delta t}=n A e v_{d} ; n=\frac{\rho N_{A}}{M} \\
& V=I R=I\left(\frac{\rho L}{A}\right) \\
& R_{\text {series }}=\sum_{i=1}^{N} R_{i} \\
& \frac{1}{R_{\text {parallel }}}=\sum_{i=1}^{N} \frac{1}{R_{i}} \\
& P=I V=I^{2} R=\frac{V^{2}}{R} \\
& Q=C V=\left(\frac{\kappa \varepsilon_{0} A}{d}\right) V=\left(\kappa C_{0}\right) V \\
& P E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C} \\
& Q_{\text {charge }}(t)=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) \\
& Q_{\text {discharge }}(t)=Q_{\max } e^{-\frac{t}{R C}} \\
& C_{\text {parallel }}=\sum_{i=1}^{N} C_{i} \\
& \frac{1}{C_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{C_{i}}
\end{aligned}
$$

Light as a Particle \& Relativity

$$
\begin{aligned}
& E=h f=\frac{h c}{\lambda}=p c \\
& K E_{\max }=h f-\phi=e V_{\text {stop }} \\
& \Delta \lambda=\frac{h}{m_{e} c}(1-\cos \phi) \\
& \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& p=\gamma m v \\
& E_{\text {total }}=K E+E_{r e s t}=\gamma m c^{2} \\
& E_{\text {total }}^{2}=p^{2} c^{2}+m^{2} c^{4} \\
& E_{\text {rest }}=m c^{2} \\
& K E=(\gamma-1) m c^{2}
\end{aligned}
$$

Geometry
Circles: $C=2 \pi r=\pi D \quad A=\pi r^{2}$
Triangles: $A=\frac{1}{2} b h$
Spheres: $A=4 \pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
Light as a Wave
$c=f \lambda=\frac{1}{\sqrt{\varepsilon_{o} \mu_{o}}}$
$S(t)=\frac{\text { energy }}{\text { time } \times \text { area }}=c \varepsilon_{o} E^{2}(t)=c \frac{B^{2}(t)}{\mu_{0}}$
$I=S_{\text {avg }}=\frac{1}{2} c \varepsilon_{o} E_{\text {max }}^{2}=c \frac{B_{\text {max }}^{2}}{2 \mu_{0}}$
$P=\frac{S}{c}=\frac{\text { Force }}{\text { Area }}$
$S=S_{o} \cos ^{2} \theta$
$v=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{n}$
$\theta_{\text {inc }}=\theta_{\text {refl }}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$\frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
$M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
$M_{\text {total }}=\prod_{i=1}^{N} M_{i}$
$S_{\text {out }}=S_{\text {in }} e^{-\sum_{i} \mu_{x} x_{i}}$
$H U=\frac{\mu_{w}-\mu_{m}}{\mu_{w}}$

Nuclear Physics
$E_{\text {binding }}=\left(Z m_{p}+N m_{n}-m_{r e s t}\right) c^{2}$
$\frac{\Delta N}{\Delta t}=-\lambda N_{o} \rightarrow N(t)=N_{o} e^{-\lambda t}$
$A(t)=A_{o} e^{-\lambda t}$
$m(t)=m_{o} e^{-\lambda t}$
$t_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$

Misc. Physics 110 Formulae
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=m \vec{a}$
$\vec{F}=-k \vec{y}$
$\vec{F}_{C}=m \frac{v^{2}}{R} \hat{r}$
$W=\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)=-\Delta P E$
$P E_{\text {gravity }}=m g y$
$P E_{\text {spring }}=\frac{1}{2} k y^{2}$
$|\vec{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}$
$\phi=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)$
$\vec{v}_{f}=\vec{v}_{i}+\vec{a} t$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$\vec{x}_{f}=\vec{x}_{i}+\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}$

