Physics 111 Homework Solutions Week \#3 - Friday

Tuesday, January 21, 2014
Chapter 16
Questions

- None

Multiple-Choice

- None

Problems

16.2 The current is given by the average charge per unit interval of time. Here, $5 \mu \mathrm{C}$ flows in 2μ s, so $I=\frac{\Delta Q}{\Delta t}=\frac{5 \times 10^{-6} \mathrm{C}}{2 \times 10^{-6} \mathrm{~s}}=2.5 \mathrm{~A}$.
16.3 To calculate the average current that flows across this muscle membrane, I need to know how many sodium channels there are over this area. Then knowing the number of ions that flow per millisecond I can calculate the average current. To start I'm going to calculate the total number of sodium channels over this patch of membrane: $\# \mathrm{Na}$ Channels $=\frac{50 \mathrm{Na} \text { Channels }}{\mu m^{2}} \times 100 \mu m^{2}=5000 \mathrm{Na}$ Channels. If there are 1000 Na ions per channel flowing per millisecond, then the average current is given by:
$I_{\text {avg }}=\left(5000\right.$ channels $\left.\times \frac{1000^{\text {ions } / \text { channel }}}{1 \times 10^{-3} \mathrm{~s}}\right) \times \frac{1 e}{\text { ion }} \times \frac{1.6 \times 10^{-19} \mathrm{C}}{1 e}=8 \times 10^{-10} \mathrm{~A}=0.8 \mathrm{nA}$.
16.17 Using $V(t)=\frac{V_{0}}{2}=V_{0} e^{-\frac{t}{R C}}$ gives for a time, called the half time, $\ln \left(\frac{1}{2}\right)=\frac{-t_{\frac{1}{2}}}{R C} \rightarrow t_{\frac{1}{2}}=R C \ln (2)$ Thus, a single measurement of the half-time will give the value of the time constant (RC) in a single measurement.
16.20 A defibrillator
a. The time constant is $\tau=R C=47 \times 10^{3} \Omega \times 32 \times 10^{-6} \mathrm{~F}=1.5 \mathrm{~s}$
b. The maximum charge is $Q_{\max }=C V_{\max }=32 \times 10^{-6} \mathrm{~F} \times 5000 \mathrm{~V}=0.16 \mathrm{C}$.
c. The maximum current is given by Ohm's Law

$$
I_{\max }=\frac{V_{\max }}{R}=\frac{5000 \mathrm{~V}}{47 \times 10^{3} \Omega}=0.106 \mathrm{~A}=106 \mathrm{~mA}
$$

d. The charge as a function of time is given as

$$
\begin{aligned}
& Q(t)=Q_{\max }\left(1-e^{-\frac{t}{\tau}}\right)=0.160 C\left(1-e^{-\frac{t}{1.5 s}}\right) . \text { The current as a function of time is } \\
& I(t)=I_{\max }\left(1-e^{-\frac{t}{\tau}}\right)=0.106 A\left(1-e^{-\frac{t}{1.5 s}}\right)
\end{aligned}
$$

e. The maximum energy is $E=\frac{1}{2} C V^{2}=\frac{1}{2} \times 32 \times 10^{-6} \mathrm{~F} \times(5000 \mathrm{~V})^{2}=400 \mathrm{~J}$.

Wednesday, January 22, 2014
Chapter 16
Questions

- None

Multiple-Choice

- None

Problems

- None

