Physics 111 Homework Solutions Week \#3 - Wednesday

Friday, January 17, 2014

Chapter 15
Questions

- None

Multiple-Choice

15.8 D
15.9 B

Problems

15.1 The equilateral triangle is given as shown. The potential energy is given by the equation $P E_{1,2}=\frac{k Q_{1} Q_{2}}{r}$. Substituting the values given, we find the
$P E_{\text {total }}=3 \times P E_{1,2}=3 \times \frac{\left(9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right)\left(3 \times 10^{-6} \mathrm{C}\right)^{2}}{0.05 \mathrm{~m}}=4.86 \mathrm{~J}$.

15.4 The relation between electric field and electric potential
a. To calculate the potential at any position x , knowing the other position and potential we use the general relation

$$
E=-\frac{\Delta V}{\Delta x} \rightarrow 10 \frac{V}{m}=-\frac{\left(V_{f}-(-15 V)\right)}{10 m-0 m} \rightarrow V_{f}=-115 \mathrm{~V}
$$

b. The potential is zero at infinity and also at a distance x given by

$$
E=-\frac{\Delta V}{\Delta x} \rightarrow 10 \frac{V}{m}=-\frac{(0-15) V}{x_{f}-0 m} \rightarrow x=-1.5 m
$$

Monday, January 20, 2014
Chapter 15
Questions

- None

Multiple-Choice

15.12 C
15.13 D
15.17 D
15.18 A

Problems

15.3 Electric Potential

a. $\quad V=\sum \frac{k Q}{r}$ and since equal and opposite charges are equally distant from the observation point at the origin, the two terms add up to zero - remember these are just + and - numbers, not vectors
b. The electric fields from each charge do not cancel, but both point in the same direction (to the left) since the force from both charges on a positive test charge at the origin is to the left. Adding these up gives $E=2 \frac{k Q}{x^{2}}$, where $\mathrm{Q}=$ $10 \mu \mathrm{C}$ and $\mathrm{x}=0.1 \mathrm{~m}$, so $\mathrm{E}=1.8 \times 10^{7} \mathrm{~N} / \mathrm{C}$, pointing to the left.
c. Since the potential at the origin is $V=0$, as it is at infinity (very far away), then there is no change in V for the third charge and therefore no net work is required.

Repeating for two positive charges:
a. $\quad V=\frac{2 k Q}{r}=1.8 \times 10^{6} \mathrm{~V}$;
b. In this case $\mathrm{E}=0$ since the E fields from each charge point in opposite directions and now cancel;
c. The net work required is $\mathrm{Q} \Delta \mathrm{V}=-18 \mathrm{~J}$ or 18 J by an external force.
15.12 The capacitance is given by
$C=\frac{\kappa \varepsilon_{0} A}{d}=\frac{1 \times 8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \times\left(25 \mathrm{mi}^{2} \times\left(\frac{1600 \mathrm{~m}}{1 \mathrm{mi}}\right)^{2}\right)}{1 \mathrm{mi} \times \frac{1600 \mathrm{~m}}{1 \mathrm{mi}}}=3.54 \times 10^{-7} \mathrm{~F}$ The charge
stored is given by $Q=C V=3.54 \times 10^{-7} F \times 50 \times 10^{6} V=17.7 C$. Finally, the energy stored is given as
$E=\frac{1}{2} C V^{2}=\frac{1}{2} \times 3.54 \times 10^{-7} \mathrm{~F} \times\left(50 \times 10^{6} \mathrm{~V}\right)^{2}=4.43 \times 10^{8} \mathrm{~J}=443 \mathrm{MJ}$
15.17 An air-spaced parallel plate capacitor
a. $\mathrm{C}=\mathrm{Q} / \mathrm{V}=36 \mu \mathrm{C} / 12 \mathrm{~V}=3 \mu \mathrm{~F}$
b. The dielectric constant of Pyrex glass is 4.7 (from Table 16.1), so $\mathrm{C}=\kappa \mathrm{C}_{\mathrm{o}}=$ $14.1 \mu \mathrm{~F}$
c. Since the capacitance has increased by a factor of 4.7 and V is the same, then Q increases by the same factor to $\mathrm{Q}=169 \mu \mathrm{C}$.
15.22 The charge that flows due to the sodium ions is
$Q=\frac{50 \text { channels }}{1 \mu m^{2}} \times 100 \mu m^{2} \times \frac{1000 \mathrm{Na}^{+1} \text { ion }}{1 \text { channel }} \times \frac{1.6 \times 10^{-19} \mathrm{C}}{\mathrm{Na}^{+1} \text { ion }}=8.0 \times 10^{-13} \mathrm{C}$. The specific capacitance can be related to the capacitance through $C=\left(\frac{C}{A}\right) A=\frac{1 \times 10^{-6} \mathrm{~F}}{1 \mathrm{~cm}^{2} \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{2}} \times 1000 \mu \mathrm{~m}^{2} \times\left(\frac{1 \mathrm{~m}}{1 \times 10^{6} \mu \mathrm{~m}}\right)^{2}=1.0 \times 10^{-12} \mathrm{~F}$. Therefore the voltage change across the membrane due to the ion flow is given by $Q=C V \rightarrow \Delta V=\frac{\Delta Q}{C}-100 \mathrm{mV}=\frac{8.0 \times 10^{-13} \mathrm{C}}{1.0 \times 10^{-12} \mathrm{~F}}-100 \mathrm{mV}=0.8 \mathrm{~V}-100 \mathrm{mV}=700 \mathrm{mV}$.
15.23 The energy in a charged capacitor is given by

$$
E=\frac{1}{2} C V^{2} \rightarrow V=\sqrt{\frac{2 E}{C}}=\sqrt{\frac{2 \times 300 J}{30 \times 10^{-6} F}}=4470 \mathrm{~V}
$$

