Physics 111 Homework Solutions Week \#5 - Friday

Tuesday, February 4, 2014

Chapter 17
Questions

- None

Multiple-Choice

17.12 B
17.13 B
17.14 D

Problems

17.16 Two long vertical wires
a. At the center between the two wires, the directions of the fields are shown in the diagram below. Taking up the page as the positive y-direction, we find that the fields add and the result is
$B_{\text {net }}=B_{8 A}+B_{5 A}=\frac{\mu_{0}}{2 \pi a}\left(I+I^{\prime}\right)=\frac{4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{A}}{2 \pi(1 \mathrm{~m})}(13 A)=2.6 \times 10^{-6} T$ in the positive $\mathrm{y}-$ direction.
b. Using the same diagram and letting $I=8 \mathrm{~A}$ and $I^{\prime}=5 \mathrm{~A}$, define the distance from I' to where the field will vanish on the right of I' as d . Thus the distance from I to this point is $\mathrm{d}+2 \mathrm{~m}$. Here the field will vanish, so
$B_{n e t}=0 \rightarrow B_{8 A}=B_{5 A}=\frac{\mu_{0} I}{2 \pi(d+2)}=\frac{\mu_{0} I^{\prime}}{2 \pi(d)} \rightarrow d=\frac{2 I^{\prime}}{I-I^{\prime}}=3.33 m$ to the right of the
5A wire.

17.18 The magnitude of the magnetic force on a wire (\#1) due to a current flowing in another wire (\#2) located at a distance d away is given by $\frac{F_{1,2}}{L}=\frac{F_{2,1}}{L}=I_{1} B_{2}=\frac{\mu_{0} I^{2}}{2 \pi d}$.
When the currents are in the same direction, the magnetic field at wire \#1 (due to the current flowing in wire \#2) is directed out of the page. Then, by the right hand rule applied to wire \#1, we have the force directed towards the right. Again for currents flowing in the same direction, the direction of the force on wire \#2 is to the
left, since the magnetic field at wire \#2 is directed into the page. Thus when the currents flow in the same direction we have an attractive force.

When the currents flow in opposite directions we have a repulsive force between the two wires.

17.19 A current balance
a. As before, $B=\frac{\mu_{0} I}{2 \pi r}$ where r is the distance from the bottom wire to the top wire.

Since the B field forms circles around the bottom current, it points out of the paper at the top wire. Then, using the right hand rule for the force $=I L B$, we find the magnetic force on the top wire to be up as shown in the figure in the text.
b. We find $\mathrm{B}=2 \times 10^{-7}(10 \mathrm{~A} / 0.005 \mathrm{~m})=4 \times 10^{-4} \mathrm{~T}$ and then $\mathrm{F}=\mathrm{ILB}=(10 \mathrm{~A})(0.4 \mathrm{~m})(4$ $\left.\times 10^{-4} \mathrm{~T}\right)=1.6 \times 10^{-3} \mathrm{~N}$. To balance this force requires $\mathrm{mg}=1.6 \times 10^{-3} \mathrm{~N}$, which give $\mathrm{m}=0.16 \mathrm{~g}$.
17.20 The magnetic field is given as
$B=\frac{\mu_{0} I}{2 \pi r}=\frac{2 \times 10^{-7} \mathrm{Tm}}{r} \rightarrow r=\frac{2 \times 10^{-7} \mathrm{Tm}}{B}=\frac{2 \times 10^{-7} \mathrm{Tm}}{5 \times 10^{-11} \mathrm{~T}}=4000 \mathrm{~m}$, pointing out how weak this magnetic field really is.
17.23 Rail Guns
a. Assuming that the current flows through the rails in a clockwise fashion the magnetic field will point vertically down into the loop described by the rails with a magnitude of

$$
B_{\text {net }}=B_{\text {top wire }}+B_{\text {bottom wire }}=2 \frac{\mu_{o} I}{2 \pi r}=2 \times \frac{4 \pi \times 10^{-7} \frac{T m}{A} \times 30 \mathrm{~A}}{2 \pi \times 0.0175 \mathrm{~m}}=6.9 \times 10^{-4} \mathrm{~T} .
$$

b. The force on the bar is given by
$F=I L B=30 \mathrm{~A} \times 0.035 \mathrm{~m} \times 10 \times 6.9 \times 10^{-4} \mathrm{~T}=7.2 \times 10^{-3} \mathrm{~N}=7.2 \mathrm{mN}$ and points to the right by the right hand rule.
c. The acceleration of the bar is given by Newton's $2^{\text {nd }}$ law and we have $a=\frac{F}{m}=\frac{7.2 \times 10^{-3} \mathrm{~N}}{0.005 \mathrm{~kg}}=1.44 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ pointing to the right and the acceleration is assumed constant if the magnetic force is constant.
d. If the projectile travels for $1 m$ then its velocity is $v_{f}^{2}=v_{i}^{2}+2 a \Delta x \rightarrow v_{f}=\sqrt{2 a \Delta x}=\sqrt{2 \times 1.44 \frac{\mathrm{~m}}{s^{2}} \times 1 \mathrm{~m}}=1.7 \frac{\mathrm{~m}}{\mathrm{~s}}$ in the direction of the applied force.
e. If the velocity needs to be larger by a factor of 50 , then we would need an acceleration of $a=\frac{v_{f}^{2}}{2 \Delta x}=\frac{\left(50 \times 1.7 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \times 1 \mathrm{~m}}=3613 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. This equates to a force of $F=m a=0.005 \mathrm{~kg} \times 3613 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=18.1 \mathrm{~N}$. The magnetic force will dictate the current that we need. From the magnetic force we have

$$
\begin{aligned}
& F=I L B=I L\left(\frac{10 \times 2 \mu_{o} I}{2 \pi r}\right) \\
& \rightarrow I=\sqrt{\frac{2 \pi r F}{20 \mu_{o} L}}=\sqrt{\frac{2 \pi \times 0.0175 \mathrm{~m} \times 18 \mathrm{~N}}{20 \times 4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{~A}} \times 0.035 \mathrm{~m}}}=1500 \mathrm{~A}
\end{aligned}
$$

Wednesday, February 5, 2014

Chapter 18

Questions

18.1 Since the number of magnetic field lines per unit area can be thought of as the strength of the magnetic field, then we can think of the magnetic flux as the total number of magnetic field lines that pass through a loop of wire that has cross sectional area A. The magnetic flux is given as $\cos \theta B A_{B}=\Phi$. In order to change the magnetic flux any one of the above three can change.
a) since the magnetic field is increasing into the page, by Faraday's law the current will be counter clockwise in order to oppose the changing magnetic flux.
b) Given the direction of rotation the current flow will initially be clockwise to oppose the decreasing magnetic flux. Then the current flow will change direction and become counter clockwise as the magnetic flux changes across the area of the coil. Thus the induced current will alternate its direction.
c) Since the coil is being stretched its area is changing and the magnetic field is decreasing, so the induced current is clockwise.
d) Since both the field and the coil rotate together, there is no change in magnetic flux through the coil, so the current induced is zero.
18.5
a) As the current increases steadily along the x-axis the magnetic flux will increase in the coil and there will be a counter clockwise induced current to oppose the change in flux.
b) If the current in the wire is constant and the coil moves downward the magnetic flux will decrease (since the magnetic field is decreasing) and there will be a clockwise induced current.
c) If the current is constant and the loop remains stationary then there is no change in magnetic flux and the induced current is zero.
d) If the current decreases and the coil moves downward then the magnetic field is decreasing as well as the magnetic flux. Thus there will be a clockwise-induced
current.
e) For the current decreasing and the coil moving upwards toward the wire there is an ambiguity. As the current decreases in the wire the flux through the loop will decrease. However the loop is also moving toward the wire and the flux is increasing. Which one is the more dominant effect is unclear.

Multiple-Choice

18.2 A
18.3 A
18.4 C
18.5 B

Problems

18.1 The induced $e m f$ is given by Faraday's Law. We have therefore
$\varepsilon=-N \frac{\Delta \Phi_{B}}{\Delta t}=-100 \frac{\left(\left(0.5 \times 10^{-12} \mathrm{~T}\right)\left(\pi(0.01 \mathrm{~m})^{2}\right)-0\right)}{0.1 \mathrm{~s}}=-1.57 \times 10^{-13} \mathrm{~V}$
18.2 The magnetic field at the coil is given by Error! Objects cannot be created from editing field codes. The induced emf is given by Faraday's law:
$\varepsilon=-N \frac{\Delta \Phi_{B}}{\Delta t}=-1 \frac{\left(\left(5 \times 10^{-7} \mathrm{~T}\right)\left(\pi\left(2.5 \times 10^{-3} \mathrm{~m}\right)^{2}\right)-0\right)}{0.2 \mathrm{~s}}=-4.91 \times 10^{-11} \mathrm{~V}$. Since the flux is decreasing with time the induced current is $c c w$ as shown in the figure below.

