Physics 111 Homework Solutions Week \#5 - Wednesday

Friday, January 31, 2014

Chapter 17

Questions

- None

Multiple-Choice

- None

Problems

17.6. The radius of the electron's orbit is determined by the magnetic force. We have
$F_{B}=F_{C} \rightarrow q v_{\perp} B=m \frac{v_{\perp}^{2}}{R}$
$\rightarrow R=\frac{m \nu_{\perp}}{q B}=\frac{9.11 \times 10^{-31} \mathrm{~kg} \times 0.05 \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \sin 45}{1.6 \times 10^{-19} \mathrm{C} \times 0.5 \mathrm{~T}}=1.21 \times 10^{-4} \mathrm{~m}$
The pitch is given as product of the parallel component of the velocity (a constant) and the period of the circular motion about the magnetic field line. The period is given by $T=\frac{2 \pi R}{v_{\perp}}=\frac{2 \pi \times 1.21 \times 10^{-4} \mathrm{~m}}{0.05 \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \sin 45}=7.15 \times 10^{-11} \mathrm{~s}$ and thus the pitch is $p=v \cos \theta \times T=0.05 \times 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \cos 45 \times 7.15 \times 10^{-11} s=7.6 \times 10^{-4} \mathrm{~m}$.
17.8 For ${ }^{64} \mathrm{Zn}$, the mass is 64 times $1.67 \times 10^{-27} \mathrm{~kg}=1.0688 \times 10^{-25} \mathrm{~kg}$, while for ${ }^{66} \mathrm{Zn}$, the mass is 66 times $1.67 \times 10^{-27} \mathrm{~kg}=1.1022 \times 10^{-25} \mathrm{~kg}$. The magnetic force causes the particles to move in a circle of radius r at constant speed given by
$r=\frac{m v}{q B}=\frac{m}{q B} \sqrt{\frac{2 q \Delta V}{m}}=\frac{1}{B} \sqrt{\frac{2 m \Delta V}{q}}$.
For ${ }^{64} \mathrm{Zn}$, the radius is
$r=\frac{1}{B} \sqrt{\frac{2 m \Delta V}{q}}=\frac{1}{10 T} \sqrt{\frac{2 \times 1.0688 \times 10^{-25} \mathrm{~kg} \times 10000 \mathrm{~V}}{2 \times 1.6 \times 10^{-19} \mathrm{C}}}=8.2 \mathrm{~mm}$.
For ${ }^{66} \mathrm{Zn}$, the radius is $r=\frac{1}{B} \sqrt{\frac{2 m \Delta V}{q}}=\frac{1}{10 T} \sqrt{\frac{2 \times 1.1022 \times 10^{-25} \mathrm{~kg} \times 10000 \mathrm{~V}}{2 \times 1.6 \times 10^{-19} \mathrm{C}}}=8.3 \mathrm{~mm}$.
17.10 From a free body diagram we find for the forces in the vertical direction $F_{B}-k y-k y=0 \rightarrow F_{B}=2 k x$. The magnetic force is given as $I L B$ and this produces for the stretch $x=\frac{I L B}{2 k}=\frac{2.5 \mathrm{~A} \times 0.5 \mathrm{~m} \times 2 T}{2 \times 10 \frac{\mathrm{~N}}{\mathrm{~m}}}=0.125 \mathrm{~m}=12.5 \mathrm{~cm}$
17.11. The torque is given by $\tau=I A B \sin \theta$. The cross sectional area of the loop is $A=\pi r^{2}=\pi(0.025 \mathrm{~m})^{2}=1.96 \times 10^{-3} \mathrm{~m}^{2}$. The minimum torque (which equals 0 Nm) is then the magnetic moment is parallel to the magnetic field and the maximum torque is when the magnetic moment is perpendicular to the magnetic field. The maximum torque is $\tau=I A B \sin \theta=2 A \times 1.96 \times 10^{-3} \mathrm{~m}^{2} \times 0.5 \mathrm{~T} \times \sin 90=1.96 \times 10^{-3} \mathrm{Nm}$

17.21 A cyclotron

a. To calculate the radii of a particle of mass m and charge q, we equate the magnetic force to the centripetal force experienced by the mass. This gives for the radius of a particle of mass $m, F_{B}=F_{C} \rightarrow q v B=\frac{m v^{2}}{r} \rightarrow r=\frac{m v}{q B}$.
b. We want the particle to travel a semi-circle of distance πr and calculate the amount of time that this takes. To do this we need to know that velocity of the particle. Again we equate the centripetal force experienced by the particle to the magnetic force and this time solve for the velocity. Doing this we find $F_{B}=F_{C} \rightarrow q v B=\frac{m v^{2}}{r} \rightarrow v=\frac{q r B}{m}$. The velocity, a constant, is the ratio of the distance traveled by the time it takes to travel this distance. Thus the time is $v=\frac{\pi r}{t} \rightarrow t=\frac{\pi r}{v}=\frac{\pi r m}{q r B}=\frac{\pi m}{q B}$.

Monday, February 3, 2014
Chapter 17
Questions

- None

Multiple-Choice

- None

Problems

- None

