Name \qquad
Physics 120 Quiz \#7, May 30, 2014
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

Consider the system shown below in which a ball of mass $m_{\text {ball }}=200 \mathrm{~g}$ is fired at a speed v_{i} and subsequently collides with a stationary block of mass $m_{\text {block }}=1.7 \mathrm{~kg}$. After the collision, the bullet and block slide across a frictionless surface until they collide with a horizontal spring of stiffness $k=18 \frac{N}{m}$ initially is at its equilibrium length.

a. Derive an expression for the initial speed of the ball, v_{i} before the collision, in terms of the given masses and the speed of the ball and block after the collision.

$$
\begin{aligned}
& \frac{d \vec{p}}{d t}=\vec{F}_{\text {net }}=0 \rightarrow \Delta p_{\text {system }}=0 \rightarrow \vec{p}_{f, \text { system }}=\vec{p}_{i, \text { system }} \\
& m_{\text {ball }}\left\langle-v_{i}, 0,0\right\rangle=\left(m_{\text {ball }}+m_{\text {block }}\right)\langle-V, 0,0\rangle \\
& \therefore v_{i}=\left(\frac{m_{\text {ball }}+m_{\text {block }}}{m_{\text {ball }}}\right) V
\end{aligned}
$$

b. If the ball and block strike the spring and eventually come to rest over a distance of $x=0.87 \mathrm{~m}$, how fast were the block and ball traveling before they struck the spring assuming that friction $\mu=0.18$ is present only over the distance the block and ball travel while in contact with the spring?

$$
\begin{aligned}
& \Delta E=W_{\text {fr }}=-\mu\left(m_{\text {ball }}+m_{\text {block }}\right) g x=\Delta K E+\Delta U_{s}=\left(0-\frac{1}{2}\left(m_{\text {ball }}+m_{\text {block }}\right) V^{2}\right)+\left(\frac{1}{2} k x^{2}-0\right) \\
& V=\sqrt{\frac{k x^{2}+2 \mu\left(m_{\text {ball }}+m_{\text {block }}\right) g x}{m_{\text {ball }}+m_{\text {block }}}}=\sqrt{\frac{18 \frac{N}{m}(0.87 \mathrm{~m})^{2}+2 \times 0.18 \times(1.9 \mathrm{~kg}) \times 9.8 \frac{\mathrm{~m}}{s^{2}} \times 0.87 \mathrm{~m}}{1.9 \mathrm{~kg}}}=3.2 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

c. What was the initial speed of the ball v_{i} before it collided with the block?

$$
v_{i}=\left(\frac{m_{\text {ball }}+m_{\text {block }}}{m_{\text {ball }}}\right) V=\left(\frac{1.9 \mathrm{~kg}}{0.2 \mathrm{~kg}}\right) \times 3.2 \frac{\mathrm{~m}}{\mathrm{~s}}=30.4 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Physics 120 Equation Sheet

$$
\begin{aligned}
& \vec{r}=\left\langle r_{x}, r_{y}, r_{z}\right\rangle=|\vec{r}| \cdot \hat{r} \\
& \text { magnitude of a vector : } r=|\vec{r}|=\sqrt{r_{x}^{2}+r_{y}^{2}+r_{z}^{2}} \\
& \text { unit vector }: \hat{r}=\frac{\vec{r}}{|\vec{r}|} \\
& \vec{v}=\frac{\Delta \vec{r}}{\Delta t} ; \vec{v}_{\text {avg }}=\frac{\vec{v}_{i}+\vec{v}_{f}}{2} \\
& \vec{r}_{f}=\vec{r}_{i}+\vec{v}_{\text {avg }} \Delta t \\
& \vec{F}_{n e t}=\frac{\Delta \vec{p}}{\Delta t} \\
& \vec{p}=\gamma m \vec{v} ; \lim _{v<c c}(\vec{p}) \sim m \vec{v} \\
& \vec{p}_{f}=\vec{p}_{i}+\vec{F}_{n e t} \Delta t \\
& \vec{r}_{f}=\vec{r}_{i}+\vec{v}_{i} \Delta t+\frac{\vec{F}_{n e t}}{2 m}(\Delta t)^{2} \\
& \vec{F}_{G}=-\frac{G M_{1} M_{2}}{r^{2}} \hat{r} \\
& \vec{F}_{g} \sim m \vec{g} \\
& \text { Constants: } \\
& g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
& G=6.67 \times 10^{-11} \frac{\mathrm{Nm}{ }^{2}}{\mathrm{~kg}^{2}} \\
& m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=0.51 \frac{\mathrm{MeV}}{\mathrm{c}^{2}} \\
& m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=938.5 \frac{\mathrm{MeV}}{\mathrm{c}^{2}} \\
& m_{E}=6 \times 10^{24} \mathrm{~kg} \\
& R_{E}=6.4 \times 10^{6} \mathrm{~m} \\
& N_{A}=6.02 \times 10^{23} \\
& c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\
& \frac{d \vec{p}}{d t}=\vec{F}_{n e t} \\
& \vec{F}_{s}=-k \vec{s} \\
& F_{f r}=\mu F_{N} \\
& k_{\text {parallel }}=\sum_{i=1}^{N} k_{i} \\
& \frac{1}{k_{\text {series }}}=\sum_{i=1}^{N} \frac{1}{k_{i}} \\
& \rho=\frac{m}{V} \\
& Y=\frac{k_{I A B}}{d} \\
& \text { Stress }=Y \times \text { Strain; Stress }=\frac{F}{A} ; \text { Strain }=\frac{\Delta l}{l} \\
& \vec{F}_{\|}=\frac{d p}{d t} \hat{p} \\
& \vec{F}_{\perp}=p \frac{d \hat{p}}{d t} \rightarrow\left|\vec{F}_{\perp}\right|=\frac{m v^{2}}{R} ; \\
& \vec{F}_{\text {Net }}=\vec{F}_{\|}+\vec{F}_{\perp}=\frac{d \vec{p}}{d t}=\frac{d p}{d t} \hat{p}+p \frac{d \hat{p}}{d t} \\
& \Delta E=\Delta Q+\Delta W=\Delta K E+\Delta U_{g}+\Delta U_{s}+\Delta E_{\text {rest }} \\
& \Delta W=\Delta K E=\int \vec{F} \cdot d \vec{r} ; \quad \vec{F} \cdot d \vec{r}=F_{x} d x+F_{y} d y+F_{z} d z \\
& K E=(\gamma-1) m c^{2} ; \lim _{v<c}(K E) \sim \frac{1}{2} m v^{2} \\
& E_{T}=\gamma m c^{2} ; E_{T}^{2}=p^{2} c^{2}+m^{2} c^{4} ; \quad E_{\text {rest }}=m c^{2} \\
& U_{g}=m g y \\
& U_{s}=\frac{1}{2} k x^{2} \\
& \vec{r}_{c o m}=\frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}}=\left\langle r_{x, c o m}, r_{y, c o m}, r_{z, c o m}\right\rangle
\end{aligned}
$$

