Name
Physics 120 Quiz \#2, January 20, 2012
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. The x -component of a particle's velocity is sampled every 5 seconds. The data are fit with a straight line as shown in the figure to the right. Assuming the fit is a good approximation to the motion, which of the following best represents the x component of the force on the particle as a function of time?

a.

c.

b.

d.

2. A ball of mass $m=50 \mathrm{~g}$ is thrown at the floor with a velocity $\vec{v}_{i}=\langle 4,-5,0\rangle \frac{\mathrm{m}}{\mathrm{s}}$. It rebounds from the floor with a velocity of $\vec{v}_{f}=\langle 4,5,0\rangle \frac{m}{s}$ and is in contact with the floor for a time of $1.5 \times 10^{-3} \mathrm{~s}$.
a. What is the force that the ball exerts on the floor?

$$
\begin{aligned}
& \vec{p}_{f}=\vec{p}_{i}+\vec{F}_{n e t} \Delta t \Rightarrow \frac{\vec{p}_{f}-\vec{p}_{i}}{\Delta t}=\vec{F}_{\text {floor on ball }} \\
& \frac{0.05 \mathrm{~kg} \times\left(\langle 4,5,0\rangle \frac{m}{s}-\langle 4,-5,0\rangle \frac{m}{s}\right)}{1.5 \times 10^{-3} \mathrm{~s}}=\langle 0,333,0\rangle N=\vec{F}_{\text {floor on ball }} \\
& \vec{F}_{\text {ball on floor }}=-\vec{F}_{\text {floor on ball }}=\langle 0,-333,0\rangle N
\end{aligned}
$$

b. After the ball loses contact with the floor it is subjected to a constant force due to gravity given by $\vec{F}_{n e t}=\langle 0,-0.49,0\rangle N$. How high does the ball rise above the floor, taken to be at $y=0$?

$$
\begin{aligned}
& p_{f y}=p_{i y}+F_{\text {net, }, y} \Delta t_{\text {rise }} \Rightarrow 0=m v_{i y}+F_{\text {net,y}} \Delta t_{\text {rise }}=0.25 \frac{\mathrm{~m}}{\mathrm{~s}}-0.49 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \Delta t_{\text {rise }} \rightarrow \Delta t_{\text {rise }}=0.51 \mathrm{~s} \\
& y_{y}=y_{i}+v_{\text {avg, }, y} \Delta t_{\text {rise }}=y_{i}+\left[\frac{v_{i, y}+v_{f, y}}{2}\right] \Delta t_{\text {rise }}=0 m+\left[\frac{5 \frac{\mathrm{~m}}{\mathrm{~s}}+0 \frac{\mathrm{~m}}{\mathrm{~s}}}{2}\right] \times 0.51 \mathrm{~s}=1.3 \mathrm{~m}
\end{aligned}
$$

Useful formulas:
$\vec{p}=\gamma m \vec{v}$

$$
k_{\text {eff }, \text { parallel }}=n_{\text {parallel }} k_{\text {individual }}
$$

$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$k_{\text {eff, series }}=\frac{k_{\text {individual }}}{n_{\text {series }}}$
$\vec{v}_{\text {avg }}=\frac{\vec{v}_{i}+\vec{v}_{f}}{2} \quad$ stress $=$ Ystrain $\rightarrow \frac{F}{A}=Y \frac{\Delta L}{L}$
$\vec{F}_{g}=m \vec{g}$
$\vec{F}_{\text {gravity }}=\frac{G M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12}$
$\vec{F}_{\text {spring }}=-k \vec{s} ; \quad \vec{s}=\left(L-L_{o}\right) \hat{s}$
$W=\int \vec{F} \cdot d \vec{r}=\Delta K E=-\Delta U$
$U_{g}=-\frac{G M_{1} M_{2}}{r}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k s^{2}$
$K E=\frac{1}{2} m v^{2}$
$K E=(\gamma-1) m c^{2}$
$\vec{p}_{f}=\vec{p}_{i}+\vec{F}_{n e t} \Delta t ; \quad \Delta t=$ large

Energy principle:
Geometry /Algebra
Circles Triangles Spheres
$C=2 \pi r \quad A=\frac{1}{2} b h \quad A=4 \pi r^{2}$
$A=\pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
Quadratic equation : $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Vectors
magnitude of a vector: $:|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$
writing a vector: $\vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=|\vec{a}| \hat{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{Nm}}{\mathrm{c}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{JS}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$
Useful Constants

