Name
Physics 120 Quiz \#3, February 3, 2012
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. Consider a gold wire that is suspended from the ceiling with dimensions 1 cm by 1 cm by 1 m . A mass of 10 kg is suspended from the wire stretching it by $12.6 \mu \mathrm{~m}$.
a. What is the interatomic spacing $\left(d_{I A B}\right)$ between the gold atoms in the wire?
(Hints: Assume that you have a $1 \mathrm{~cm}^{3}$ volume to do the calculation, the density of gold is $19300 \mathrm{~kg} / \mathrm{m}^{3}$ and the molar mass of gold is $0.197 \mathrm{~kg} / \mathrm{mol}$.

Assuming a $1 \mathrm{~m}^{3}$ volume the total mass of gold $\left(\rho_{\mathrm{Al}}=19300 \mathrm{~kg} / \mathrm{m}^{3}\right)$ is 19300 kg . The number of atoms in this mass is given by
$\frac{\text { \#atoms }}{\text { volume }}=M_{T} \times m \times N_{A}=19300 \mathrm{~kg} \times \frac{1 \text { mole }}{0.197 \mathrm{~kg}} \times 6.02 \times 10^{23}=5.9 \times 10^{28} \frac{\text { atoms }}{\text { volume }}$, where the molar mass of gold is $m=197 \mathrm{~g} / \mathrm{mol}$. Then the number of atoms on a side of length $L=1 \mathrm{~m}$, is the cubed root of the number of atoms in the volume. Thus the number of atoms on a side is $N \frac{\text { atoms }}{\text { side }}=\sqrt[3]{5.9 \times 10^{28}}=3.89 \times 10^{9} \frac{\text { atoms }}{\text { side }}$. Lastly, in the side of length $L=1 \mathrm{~m}$, there are $N($ atoms $/$ side $)$ each spaced by $d_{I A B}$. Thus the length of an interatomic bond is

$$
L=N \times d_{I A B} \rightarrow d_{I A B}=\frac{L}{N}=\frac{1 \mathrm{~m}}{3.89 \times 10^{9}}=2.57 \times 10^{-10} \mathrm{~m} .
$$

b. What is the mass of a single atom of gold?
$m_{\text {atom }}=\frac{0.197 \mathrm{~kg}}{1 \mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { atoms }}=3.27 \times 10^{-25} \mathrm{~kg}$
c. What is Young's modulus for gold?

$$
\begin{aligned}
& \text { Stress }=Y \times \text { Strain } \rightarrow Y=\frac{\text { Stress }}{\text { Strain }}=\frac{F L}{A_{\text {wire }} \Delta L}=\frac{m g L}{A_{\text {wire }} \Delta L} \\
& Y=\frac{10 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 1 \mathrm{~m}}{(0.01 \mathrm{~m})^{2} \times 12.6 \times 10^{-6} \mathrm{~m}}=7.8 \times 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

d. What is the speed of sound in gold?

$$
v_{s}=\sqrt{\frac{k_{I A B}}{m_{\text {atom }}}} d_{I A B}=\sqrt{\frac{Y d_{I A B}^{3}}{m_{\text {atom }}^{3}}}=\sqrt{\frac{7.8 \times 10^{10} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times\left(2.6 \times 10^{-10} \mathrm{~m}\right)^{3}}{3.27 \times 10^{-25} \mathrm{~m}}}=2048 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Useful formulas:
$\vec{p}=\gamma m \vec{v} \quad k_{\text {eff ,parallel }}=n_{\text {parallel }} k_{\text {individual }}$
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$k_{\text {eff, series }}=\frac{k_{\text {individual }}}{n_{\text {series }}}$
$\vec{v}_{\text {avg }}=\frac{\vec{v}_{i}+\vec{v}_{f}}{2} \quad$ stress $=$ Ystrain $\rightarrow \frac{F}{A}=Y \frac{\Delta L}{L}$
$\vec{F}_{g}=m \vec{g}$
$v_{s}=\sqrt{\frac{k_{I A B}}{m_{\text {atom }}}} d$
$\vec{F}_{\text {gravity }}=\frac{G M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12} \quad k_{I A B}=Y d$
$\vec{F}_{\text {spring }}=-k \vec{s} ; \quad \vec{s}=\left(L-L_{o}\right) \hat{s}$
$W=\int \vec{F} \cdot d \vec{r}=\Delta K E=-\Delta U$
$U_{g}=-\frac{G M_{1} M_{2}}{r}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k s^{2}$
$K E=\frac{1}{2} m v^{2}$
$K E=(\gamma-1) m c^{2}$

Energy principle:
Geometry /Algebra
Circles Triangles Spheres
$C=2 \pi r \quad A=\frac{1}{2} b h \quad A=4 \pi r^{2}$
$A=\pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
Quadratic equation : $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Vectors
magnitude of a vector: $|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$
writing a vector: $\vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=|\vec{a}| \hat{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$

Useful Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{A}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{JS}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

