Name
Physics 120 Quiz \#4, February 10, 2012
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

1. A person hoists a bucket of water from a well and holds the rope, keeping the bucket at rest as in the left photo. Call this situation A. A short time later the person ties the rope to the bucket so that the rope holds the bucket in place as in the right photo. Call this situation B.

a. The tension in situation B is greater than in situation A.
b. The tension in situation B is equal to that in situation A.
c. The tension in situation B is less than that in situation A.
d. Three is no way that the individual tensions in the ropes can be determined.
2. A Boeing 737-600 jet prepares to takeoff from a runway. The engines provide constant forward thrust given by $\vec{F}_{\text {thrust }}=\langle 173400,0,0\rangle N$ and while the plane moves down the runway friction due to the rubber tires and the concrete runway (with coefficient of kinetic friction given by $\mu_{k}=0.2$) opposes the motion of the jet. (All data are obtained from www.boeing.com/commercial/737family/pf/pf_600tech.html)
a. What is the expression for the net force vector?

$$
\vec{F}_{\text {net }}=\left\langle F_{\text {thrust }}-F_{\text {friction }}, F_{\text {normal }}-F_{\text {weight }}, 0\right\rangle
$$

b. Starting from a fundamental principle, if the plane starts from rest and takes off when its velocity is $\vec{v}_{f}=\langle 77,0,0\rangle \frac{m}{s}$ and not before, what is the mass of the Boeing 737-600 if the jet takes 60 s to get to from rest to this final velocity?

$$
\begin{aligned}
& F_{\text {net }}=\frac{d p}{d t} \rightarrow=\left\langle F_{\text {thrust }}-F_{\text {friction }}, F_{\text {normal }}-F_{\text {weight }}, 0\right\rangle=\left\langle m \frac{d v_{x}}{d t}, 0,0\right\rangle \\
& m v_{f x}-m v_{i x}=m \int_{v_{\text {it }}}^{v_{\text {ft }}} d v=\left(F_{\text {thrust }}-F_{\text {friction }}\right) \int_{t_{i}}^{t_{f}} d t=\left(F_{\text {thrust }}-\mu F_{\text {normal }}\right) \Delta t=\left(F_{\text {thrust }}-\mu \mathrm{mg}\right) \Delta t \\
& m\left(v_{f x}+\mu g \Delta t\right)=F_{\text {thrust }} \Delta t \Rightarrow m=\frac{F_{\text {thrust }} \Delta t}{v_{f x}+\mu g \Delta t}=\frac{173400 \mathrm{~N} \times 60 \mathrm{~s}}{77 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(0.2 \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 60 \mathrm{~s}\right)}=53464 \mathrm{~kg}
\end{aligned}
$$

c. How far down the runway does the plane takeoff?

$$
\begin{aligned}
& \vec{v}=\frac{d \vec{r}}{d t} \Rightarrow d x=v_{f x} d t \Rightarrow \Delta x=\int_{x_{i}}^{x_{f}} d x=\int_{t_{i}}^{t_{f}}\left(\frac{\left(F_{\text {thrust }}-\mu m g\right) t}{m}\right) d t=\frac{1}{2}\left(\frac{F_{\text {thrust }}-\mu m g}{m}\right) t^{2} \\
& \Delta x=\frac{1}{2} \times\left(\frac{173400 N-\left(0.2 \times 53464 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{s^{2}}\right)}{53464 \mathrm{~kg}}\right)(60 \mathrm{~s})^{2}=2310 \mathrm{~m}
\end{aligned}
$$

Useful formulas:

$$
\vec{p}=\gamma m \vec{v} \quad k_{\text {eff ,parallel }}=n_{\text {parallel }} k_{\text {individual }}
$$

$\gamma=\frac{1}{\sqrt{v^{2}}}$

$$
k_{\text {eff, ,series }}=\frac{k_{\text {individual }}}{n_{\text {series }}}
$$

$\vec{v}_{\text {avg }}=\frac{\vec{v}_{i}+\vec{v}_{f}}{2} \quad$ stress $=$ Ystrain $\rightarrow \frac{F}{A}=Y \frac{\Delta L}{L}$
$\vec{F}_{g}=m \vec{g}$

$$
v_{s}=\sqrt{\frac{k_{I A B}}{m_{\text {atom }}}} d
$$

$F_{f r}=\mu F_{N}$
$\vec{F}_{\text {gravity }}=\frac{G M_{1} M_{2}}{r_{12}^{2}} \hat{r}_{12} \quad k_{I A B}=Y d$
$\vec{F}_{\text {spring }}=-k \vec{s} ; \quad \vec{s}=\left(L-L_{o}\right) \hat{s}$
$W=\int \vec{F} \cdot d \vec{r}=\Delta K E=-\Delta U$
$U_{g}=-\frac{G M_{1} M_{2}}{r}$
$U_{g}=m g y$
$U_{s}=\frac{1}{2} k s^{2}$
$K E=\frac{1}{2} m v^{2}$
$K E=(\gamma-1) m c^{2}$

Momentum Principle
$\vec{p}_{f}=\vec{p}_{i}+\vec{F}_{n e t} \Delta t ; \quad \Delta t=$ large
Useful Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$G=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{\mathrm{Nm}{ }^{2}}{\mathrm{C}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{~J} S$
Energy principle:
Geometry /Algebra
Circles Triangles Spheres
$C=2 \pi r \quad A=\frac{1}{2} b h \quad A=4 \pi r^{2}$
$A=\pi r^{2} \quad V=\frac{4}{3} \pi r^{3}$
Quadratic equation : $a x^{2}+b x+c=0$,
whose solutions are given by : $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Vectors
magnitude of a vector: $|\vec{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}$
writing a vector: $\quad \vec{a}=\left\langle a_{x}, a_{y}, a_{z}\right\rangle=|\vec{a}| \hat{a}=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}$
$m_{p}=1.67 \times 10^{-27} k g=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{\mathrm{c}^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

