Name \qquad
Physics 121 Quiz \#6, March 2, 2018
Please show all work, thoughts and/or reasoning in order to receive partial credit. The quiz is worth 10 points total.

I affirm that I have carried out my academic endeavors with full academic honesty.

1. A segment of wire of length $L=15 \mathrm{~cm}$ with has a current $I=3 \mathrm{~A}$ flowing from left to right across the page. At a point 6 cm below the wire the midpoint of the wire, what is the magnetic field?

$$
\left|\vec{B}_{\text {wire }}\right|=\frac{\mu_{o} L I}{4 \pi r \sqrt{\left(\frac{L}{2}\right)^{2}+r^{2}}}=\frac{4 \pi \times 10^{-7} \frac{T_{m}}{A} \times 0.15 \mathrm{~m} \times 3 \mathrm{~A}}{4 \pi(0.06 \mathrm{~m}) \sqrt{(0.075 \mathrm{~m})^{2}+(0.06 \mathrm{~m})^{2}}}=7.8 \times 10^{-6} \mathrm{~T}
$$

Directed into the plane of the page by the right-hand rule.
2. Suppose that you have a $N=300$ turn circular coil of wire with radius $R=20 \mathrm{~cm}$. The coil of wire is oriented in the $\mathrm{x}-\mathrm{y}$ plane with the axis of the coil pointing along the z-direction. If a current of $I=1 \mathrm{~A}$ is flowing clockwise (as viewed looking along the -z direction toward the coil, what is the magnetic field at a point $P=\langle 0,0,20\rangle \mathrm{cm}$? The coil of wire and its orientation are shown on
 the right.
$\left|\vec{B}_{\text {ring }}\right|=\frac{\mu_{0} N I R^{2}}{2\left(z^{2}+R^{2}\right)^{\frac{3}{2}}}=\frac{4 \pi \times 10^{-7} \frac{\frac{T m}{A}}{A} \times 300 \times 1 A \times(0.2 m)^{2}}{2\left((0.2 m)^{2}+(0.2 m)^{2}\right)^{\frac{3}{2}}}=3.33 \times 10^{-4} T$
$\vec{B}=\langle 0,0,-3.33\rangle \times 10^{-4} T$
3. Suppose that a charge $q=+e$ were directed toward point $P=\langle 0,0,20\rangle \mathrm{cm}$ with a velocity $\vec{v}=\langle-2,0,0\rangle \times 10^{5} \frac{m}{s}$. What magnetic force would the charge experience at point P ?

$$
\begin{aligned}
& \vec{F}=q \vec{v} \times \vec{B}=\left|\begin{array}{ccc}
i & j & k \\
-e v & 0 & 0 \\
0 & 0 & -B
\end{array}\right|=\langle 0,-e v B, 0\rangle=\langle 0,1.07,0\rangle \times 10^{-17} N \\
& F_{y}=e v B=1.6 \times 10^{-19} \times 2 \times 10^{5} \frac{m}{s} \times 3.33 \times 10^{-4} T=1.07 \times 10^{-17} \mathrm{~N}
\end{aligned}
$$

4. Suppose that instead of the charge q, you had a very short segment of wire of length L, where $L \ll 20 \mathrm{~cm}$, centered on point $P=\langle 0,0,20\rangle \mathrm{cm}$ with a curent I flowing along the -z-axis. What magnetic force would the wire feel due to the magnetic field of the ring at point $P=\langle 0,0,20\rangle \mathrm{cm}$?

$$
\vec{F}=I \vec{L} \times \vec{B}=\left|\begin{array}{ccc}
i & j & k \\
0 & 0 & -I L \\
0 & 0 & -B
\end{array}\right|=\langle 0,0,0\rangle N
$$

5. Suppose that a segment of wire were suspended from the ceiling with strings of negligible mass. A magnetic field exists in the region where the wire is suspended. If a current I flows in the $-z$ direction as shown in the diagram the wire will experience a magnetic force \vec{F} that makes it swing through an angle θ measured with respect to the y -axis and comes to rest. What is the magnetic field that will produce this? Assume that the wire has a uniform mass density $\mu=\frac{m}{L}$.

a. $\vec{B}=\left\langle 0, \frac{\mu g}{I} \tan \theta, 0\right\rangle$.
(b.) $\vec{B}=\left\langle 0,-\frac{\mu g}{I} \tan \theta, 0\right\rangle$.
c. $\vec{B}=\left\langle-\frac{\mu g}{I} \tan \theta, 0,0\right\rangle$.
d. $\quad \vec{B}=\left\langle 0,0,-\frac{\mu g}{I} \tan \theta\right\rangle$.
e. None of the magnetic fields will produce this effect.

Physics 121 Equation Sheet

Electric Forces, Fields and Potentials
$\vec{F}=k \frac{Q_{1} Q_{2}}{r^{2}} \hat{r} ; \hat{r}=\frac{\vec{r}_{o}-\vec{r}_{s}}{\left|\vec{r}_{o}-\vec{r}_{s}\right|}$
$\vec{E}=\frac{\vec{F}}{q}=\int d \vec{E}=\int d E \hat{r}=\int \frac{k d q_{\hat{r}}}{r^{2}}$
$\vec{E}_{Q}=k \frac{Q}{r^{2}} \hat{r}$
$\left|\vec{E}_{\|}\right|=\frac{2 k q s}{r^{3}}$; dipole $r \gg s$
$\left|\vec{E}_{\perp}\right|=\frac{k q s}{r^{3}}$; dipole $r \gg s$
$\left|\vec{E}_{\text {rod }}\right|_{\perp}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q}{r \sqrt{r^{2}+(L / 2)^{2}}}\right]$
$\left|\vec{E}_{r o d}\right|_{\|}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q}{r(L+r)}\right] ; \mid \vec{E}_{\text {rod }} \|_{\|} \sim \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q}{r L}\right) L \gg r$
$\left|\vec{E}_{\text {ring }}\right|=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{Q z}{\left(R^{2}+z^{2}\right)^{\frac{3}{2}}}\right]$
$\left|\vec{E}_{\text {disk }}\right|=\frac{Q}{2 \pi \varepsilon_{0} R^{2}}\left[1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right] ; \quad\left|\vec{E}_{\text {disk }}\right| \sim \frac{Q}{2 \varepsilon_{0} A}\left[1-\frac{z}{R}\right] \quad z \ll R ; \quad\left|\vec{E}_{\text {disk }}\right| \sim \frac{Q}{2 \varepsilon_{0} A} \quad z \ll R$
$\left|\vec{E}_{\text {capacitor }}\right| \sim \frac{Q}{\varepsilon_{0} A} ; \quad\left|\vec{E}_{\text {fringe }}\right| \sim \frac{Q}{2 \varepsilon_{0} A}\left(\frac{s}{R}\right)$
$W=-q \Delta V=-\Delta U=\Delta K ; \quad U=\sum_{i \neq j} \frac{k Q_{i} Q_{j}}{r_{i j}}$;
$V_{Q}=\frac{k Q}{r} ; V_{Q^{\prime} s}=\sum_{i} \frac{k Q_{i}}{r_{i}}$
$\Delta V=-\int \vec{E} \cdot d \vec{r}$
$E_{x}=-\frac{\Delta V}{\Delta x} ; \quad E_{y}=-\frac{\Delta V}{\Delta y} ; \quad E_{z}=-\frac{\Delta V}{\Delta z} ; \quad \vec{E}=-\left\langle\frac{d V}{d x}, \frac{d V}{d y}, \frac{d V}{d z}\right\rangle$
$Q=\left(\frac{\kappa \varepsilon_{0} A}{s}\right) \Delta V$
$U=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{Q^{2}}{2 C}$
$Q=Q_{\max }\left(1-e^{-\frac{t}{R C}}\right) ; Q=Q_{\max } e^{-\frac{t}{R C}}$
$I=\frac{d Q}{d t}=n|e| A v_{d}=\int \vec{J} \cdot d \vec{A}$
$n=\frac{\rho}{M} N_{A}$
$\vec{J}=n|e| \vec{V}_{d}=\sigma \vec{E}=\frac{1}{\rho} \vec{E} \rightarrow V=I R ; R=\frac{\rho L}{A}$
$P=I V=I^{2} R=\frac{V^{2}}{R}$
$\rho=\rho_{0}(1+\alpha \Delta T)$
$\vec{F}=q \vec{v} \times \vec{B} ;|\vec{F}|=q v B \sin \theta$
$\vec{B}=\frac{\mu_{o}}{4 \pi}\left(\frac{q \vec{v} \times \hat{r}}{r^{2}}\right)$
$d \vec{B}=\frac{\mu_{0} I}{4 \pi}\left(\frac{d \vec{l} \times \hat{r}}{r^{2}}\right)$
$\left|\vec{B}_{\text {wire }}\right|=\frac{\mu_{o} L I}{4 \pi r \sqrt{\left(\frac{L}{2}\right)^{2}+r^{2}}} ;\left|\vec{B}_{\text {wire }}\right| \approx \frac{\mu_{o} I}{2 \pi r} L \gg r$
$\left|\vec{B}_{\text {ring }}\right|=\frac{\mu_{o} I R^{2}}{2\left(z^{2}+R^{2}\right)^{\frac{2}{2}}} ;\left|\vec{B}_{\text {ring }}\right| \approx \frac{\mu_{o} I R^{2}}{2 z^{3}} z \ll R$

Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$1 e=1.6 \times 10^{-19} \mathrm{C}$
$k=\frac{1}{4 \pi \varepsilon_{o}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$
$\varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{\mathrm{Nm}^{2}}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
$\mu_{o}=4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
$h=6.63 \times 10^{-34} \mathrm{Js}$
$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}=\frac{0.511 \mathrm{MeV}}{c^{2}}$
$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}=\frac{937.1 \mathrm{MeV}}{c^{2}}$
$m_{n}=1.69 \times 10^{-27} \mathrm{~kg}=\frac{948.3 \mathrm{MeV}}{c^{2}}$
$1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}=\frac{931.5 \mathrm{MeV}}{c^{2}}$
$N_{A}=6.02 \times 10^{23}$
$A x^{2}+B x+C=0 \rightarrow x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A}$

