Physics 123 Homework Solutions

Week #1 – Unit O Geometric Optics

01.1

$$\tan \phi = \frac{1m}{2m} \rightarrow \phi = 26.6^{\circ}$$
$$90 = \theta + \phi \rightarrow \theta = 63.4^{\circ}$$

01.3

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $1.4 \sin 50 = n \sin 90$ n = 1.07

01.4

At the front interface, $n_1 \sin \theta_1 = n_2 \sin \theta_2 \rightarrow 1.0 \sin 35 = 1.59 \sin \theta_2 = 21.1^\circ$. At the back interface, the ray strikes at 21.1° and thus emerges by Snell's Law, at 35° . It has been displaced by an amount x above the center of the square block given by $x = d \tan \theta_2 = 0.39d$. Measured from the bottom right corner of the block, this gives 0.89d.

03.1

The image distance is given from the thin lens equation with d_0 at infinity. This gives the image distance equal to the focal length of the converging lens. Thus $d_i = f = 20$ cm.

03.2

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \to \frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o} = \frac{1}{50cm} - \frac{1}{100cm} \to d_i = 100cm$$
$$M = \frac{h_i}{h_o} = -\frac{d_i}{d_o} = -\frac{100cm}{100cm} = -1 \to h_i = -1h_o = -1cm$$

The image is thus real, inverted, and 1cm high.

03.5

The image distance is given from the thin lens equation with d_0 at infinity. This gives the image distance equal to the focal length of the diverging lens. Thus $d_i = f = -20$ cm.

03.6

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \to \frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o} = \frac{1}{-50cm} - \frac{1}{100cm} \to d_i = -33.3cm$$
$$M = \frac{h_i}{h_o} = -\frac{d_i}{d_o} = -\left(\frac{-33.3cm}{100cm}\right) = 0.33 \to h_i = -1h_o = 0.33cm$$

The image is upright, virtual and reduced.

Numerical solutions to other selected problems.

01.2

Needs more information in order to answer: Assume that $n_2 = 1.0$, so that $\theta_2 = 36.3^{\circ}$.

03.3

 $d_i = infinity$

03.4

 d_i = -30cm (30 cm to left of the lens.) Image is twice as large as object with the image virtual and upright.

03.7

 $d_i = -15cm$

03.8

 $d_{\rm i}$ = -10.5cm and the image height is $0.7h_{\rm o}.~$ Thus the image is upright reduced and virtual.