Physics 123 Homework Solutions

Week \#1 - Unit O Geometric Optics

01.1

$\tan \phi=\frac{1 m}{2 m} \rightarrow \phi=26.6^{\circ}$
$90=\theta+\phi \rightarrow \theta=63.4^{\circ}$
01.3
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$1.4 \sin 50=n \sin 90$
$n=1.07$

01.4

At the front interface, $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \rightarrow 1.0 \sin 35=1.59 \sin \rightarrow \theta_{2}=21.1^{\circ}$. At the back interface, the ray strikes at 21.1^{0} and thus emerges by Snell's Law, at 35^{0}. It has been displaced by an amount x above the center of the square block given by $x=d \tan \theta_{2}=0.39 d$. Measured from the bottom right corner of the block, this gives 0.89d.

03.1

The image distance is given from the thin lens equation with d_{o} at infinity. This gives the image distance equal to the focal length of the converging lens. Thus $d_{i}=f=20 \mathrm{~cm}$.
03.2
$\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \rightarrow \frac{1}{d_{i}}=\frac{1}{f}-\frac{1}{d_{o}}=\frac{1}{50 \mathrm{~cm}}-\frac{1}{100 \mathrm{~cm}} \rightarrow d_{i}=100 \mathrm{~cm}$
$M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}=-\frac{100 \mathrm{~cm}}{100 \mathrm{~cm}}=-1 \rightarrow h_{i}=-1 h_{o}=-1 \mathrm{~cm}$
The image is thus real, inverted, and 1 cm high.

03.5

The image distance is given from the thin lens equation with d_{0} at infinity. This gives the image distance equal to the focal length of the diverging lens. Thus $d_{i}=f=-20 \mathrm{~cm}$.
03.6
$\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f} \rightarrow \frac{1}{d_{i}}=\frac{1}{f}-\frac{1}{d_{o}}=\frac{1}{-50 \mathrm{~cm}}-\frac{1}{100 \mathrm{~cm}} \rightarrow d_{i}=-33.3 \mathrm{~cm}$
$M=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}=-\left(\frac{-33.3 \mathrm{~cm}}{100 \mathrm{~cm}}\right)=0.33 \rightarrow h_{i}=-1 h_{o}=0.33 \mathrm{~cm}$
The image is upright, virtual and reduced.

Numerical solutions to other selected problems.

01.2

Needs more information in order to answer: Assume that $\mathrm{n}_{2}=1.0$, so that $\theta_{2}=36.3^{\circ}$.

03.3

$\mathrm{d}_{\mathrm{i}}=$ infinity

03.4

$d_{i}=-30 \mathrm{~cm}(30 \mathrm{~cm}$ to left of the lens.) Image is twice as large as object with the image virtual and upright.

03.7

$d_{i}=-15 \mathrm{~cm}$

03.8

$d_{i}=-10.5 \mathrm{~cm}$ and the image height is $0.7 h_{0}$. Thus the image is upright reduced and virtual.

