Physics 123 Homework Solutions

Week \#1 Unit O Geometric Optics

O4.1
$\frac{1}{d_{o 1}}+\frac{1}{d_{i 1}}=\frac{1}{f_{1}} \rightarrow \frac{1}{d_{i 1}}=\frac{1}{f_{1}}-\frac{1}{d_{o 1}}=\frac{1}{50 \mathrm{~cm}}-\frac{1}{70 \mathrm{~cm}}=0.0057 \mathrm{~cm}^{-1} \rightarrow d_{i 1}=175 \mathrm{~cm}$
Thus, $d_{o 2}=-75 \mathrm{~cm}$ (it is 175 cm from lens 1 , and lenses 1 and 2 are separated by 100 cm .)
Therefore this is a virtual object.
$\frac{1}{d_{o 2}}+\frac{1}{d_{i 2}}=\frac{1}{f_{2}} \rightarrow \frac{1}{d_{i 2}}=\frac{1}{f_{2}}-\frac{1}{d_{o 2}}=\frac{1}{30 \mathrm{~cm}}-\frac{1}{-75 \mathrm{~cm}}=0.047 \mathrm{~cm}^{-1} \rightarrow d_{i 2}=21.4 \mathrm{~cm}$.
This image is a virtual image since it is located on the same side of the lens as the object.
$M_{\text {total }}=M_{1} M_{2}=\left(-\frac{d_{i 1}}{d_{o 1}}\right)\left(-\frac{d_{i 2}}{d_{o 2}}\right)=\left(-\frac{175}{70}\right)\left(-\frac{21.4}{-75}\right)=-0.71$
Thus the final image is virtual, inverted wrt original object and reduced in size. It is located at $70 \mathrm{~cm}+100 \mathrm{~cm}+21.4 \mathrm{~cm}=191.4 \mathrm{~cm}$ to the right of the original object.

O4.2

NOTE: This drawing does not correspond to the mathematics given above. I'll fix the drawing or mathematics in the morning.

O4.9
$\frac{1}{d_{o 1}}+\frac{1}{d_{i 1}}=\frac{1}{f_{1}} \rightarrow \frac{1}{d_{i 1}}=\frac{1}{f_{1}}-\frac{1}{d_{o 1}}=\frac{1}{25 \mathrm{~cm}}-\frac{1}{40 \mathrm{~cm}}=0.015 \mathrm{~cm}^{-1} \rightarrow d_{i 1}=66.7 \mathrm{~cm}$
Thus, $d_{o 2}=d-d_{i 1}=100 \mathrm{~cm}-66.7 \mathrm{~cm}=33.3 \mathrm{~cm}$ (to the left of lens 2.)
Therefore this is a real object.
$\frac{1}{d_{o 2}}+\frac{1}{d_{i 2}}=\frac{1}{f_{2}} \rightarrow \frac{1}{d_{i 2}}=\frac{1}{f_{2}}-\frac{1}{d_{o 2}}=\frac{1}{-15 \mathrm{~cm}}-\frac{1}{33.3 \mathrm{~cm}}=-0.097 \mathrm{~cm}^{-1} \rightarrow d_{i 2}=-10.3 \mathrm{~cm}$.
This image is a virtual image since it is located on the same side of the lens as the object.
$M_{\text {total }}=M_{1} M_{2}=\left(-\frac{d_{i 1}}{d_{o 1}}\right)\left(-\frac{d_{i 2}}{d_{o 2}}\right)=\left(-\frac{66.7}{40}\right)\left(-\frac{-10.3}{33.3}\right)=-0.53$
Thus the final image is virtual, inverted wrt original object and reduced in size. It is located at $40 \mathrm{~cm}+(100 \mathrm{~cm}-10.3 \mathrm{~cm})=129.7 \mathrm{~cm}$ to the right of the original object.

O4.10

04.15
$\frac{1}{d_{o 1}}+\frac{1}{d_{i 1}}=\frac{1}{f_{D}} \rightarrow \frac{1}{d_{i 1}}=\frac{1}{f_{D}}-\frac{1}{d_{o 1}}=\frac{1}{-25 \mathrm{~cm}}-\frac{1}{100 \mathrm{~cm}}=-0.14 \mathrm{~cm}^{-1} \rightarrow d_{i 1}=-7.1 \mathrm{~cm}$
Thus, this is a virtual image and, $d_{o 2}=d+d_{i 1}=20 \mathrm{~cm}+7.1 \mathrm{~cm}=27.7 \mathrm{~cm}$ (to the left of lens 2.)
$\frac{1}{d_{o 2}}+\frac{1}{d_{i 2}}=\frac{1}{f_{C}} \rightarrow \frac{1}{d_{i 2}}=\frac{1}{f_{C}}-\frac{1}{d_{o 2}}=\frac{1}{25 \mathrm{~cm}}-\frac{1}{27.1 \mathrm{~cm}}=-0.003 \mathrm{~cm}^{-1} \rightarrow d_{i 2}=337.5 \mathrm{~cm}$.
This image is a real image since it is located on the opposite side of the lens as the object.
$M_{\text {total }}=M_{1} M_{2}=\left(-\frac{d_{i 1}}{d_{o 1}}\right)\left(-\frac{d_{i 2}}{d_{o 2}}\right)=\left(-\frac{-7.1}{10}\right)\left(-\frac{337.5}{27.1}\right)=-12.5$
Thus the final image is real, inverted wrt original object and enlarged in size. It is located at $337.5 \mathrm{~cm}+20 \mathrm{~cm}+10 \mathrm{~cm}=367.5 \mathrm{~cm}$ to the right of the original object.
04.16

