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Week #4 Unit T Thermodynamics 
 
 
T2B.1 
 According to the ideal gas law, the pressure is given by 
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magnitude less pressure than the pressure of the best lab vacuum. 
 
 
T2B.6 
 The rms velocity of a molecule is given by 
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where the mass was given by the molar 

mass of CO2 ( = 12g/mol + 2x16g/mol = 44g/mol) divided by Avogadro’s number. 
 
T2B.7 
Since Avogadro’s number of nucleons has a mass of about 1.0g, Avogadro’s number of 
helium atoms (which contain four nucleons each) should have a mass of 4.0g.  Since out 
sample has a mass of 0.4g, this means that it should contain 1/10th of NA, or 6.02x1022 
molecules.  For monatomic helium, the thermal contained in the gas 
is JKTNkE K
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about 70kg (on a really good day), my speed would have to 

be s
mthermal

thermal kg
J

m
EvmvE 2.3

70
368222

2
1 =

×
==→= .  This is about 7 mph, which is 

not that fast, but since a person is very massive, this is a lot of energy contained in the 
gas. 
 
T2S.2 

If we take the ideal gas law and divide by the volume we get
V
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expression we see that
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∝ , which is Boyle’s law for a fixed N and T. 

If we take the ideal gas law and divide by the pressure we get
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expression we see that , which is Gay-Lussac’s law for a fixed N and P. TV ∝
If we take the ideal gas law and divide by Boltzmann’s constant and the temperature we 
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the claim of Avogadro. 



 
 
 
 
T2R.2 
a.  I’ll set up a coordinate system such that the x axis is perpendicular to the end face.  Let 
vx be the magnitude of a given molecule’s velocity and L = 10m is the length of the 
module parallel to the x axis.  Assuming that the collisions with the walls parallel to the x 
axis do not, on average, change the molecule’s x-velocity then the time ∆t that it will take 
the molecule to travel from the end face of interest down the module and back to the end 

face is
xv
Lt 2

=∆ , and this is the time between hits for that molecule.  The magnitude is 

needed in the denominator since the sign of the velocity can be + or -.  If there are N 
molecules in the module that have an average x-velocity of [vx]avg, then the average 

number of hits that he end face experiences per unit time is
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The probability that the molecule will go through the hole is when it hit the end face 
should be the same as the ratio of the hole’s area to the face area, or a/A.  Any molecule 
that hits the hole’s area will escape to space, which is the absolute value of the rate at 
which the number of molecules decreases with time.  

Therefore
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b.  Since dN/dt is actually negative, so we can the above equation 

as
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c.  As a rough guess, I imagine that people would have a difficult time remaining 
consciousness if the number of molecules in a given amount  of inhaled volume drops to 
roughly 1/3 the number at sea level (see T2A.1).  Thus the value of N will drop to N0/e 
when t ~ τ, so it is reasonable to assume that people will black out after a time very 
nearly equal to τ. 
d.  We’ll have to wait until sectionT7 to see this, but for sufficiently narrow distributions 

of velocities, the square root of the average squared x-velocity is given as
m
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e.  If we substitute this result into the expression for τ, we have
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average mass of an air molecule is m = M/NA, where M is 29 g/mol (see T2B.3) and the 
volume of the module is ( ) LV D 2

2π=  (the module has diameter D.)  If the temperature is 
295K in the module we find for τ, 

( ) ( )
( )

s
Km

mm
TkN

M
a

L

molkg
J

mol
kg

BA

D

8600
29531.8

029.0
01.0

10222
2

22
2 =

×
=≈

×

ππ
τ .  This is about 2.5 



hours, so the astronauts should have plenty of time to find and patch the leak, I would 
guess. 
 
 
T2A.1 
a.  Let us imagine the parcel to be a flat cylindrical disk with infinitesimal vertical 
thickness dz and horizontal circular top and bottom faces having area A.  Let the air 
pressure evaluated at the cylindrical parcel’s bottom and top surfaces be P(z – ½ dz) and 
P(z + ½ dz) respectively, where z specifies the coordinate of the parcel’s center.  The 
upward force that air pressure exerts on the bottom of the parcel will then have a 
magnitude The downward component AP(z – ½ dz) and the downward force that air 
pressure exerts on the top of the parcel will have a magnitude of AP(z + ½ dz).  The 
vertical component of the net force on the particle must be zero, implying 

that
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N is the number of molecules in the parcel, m is the average mass of a molecule, and g is 
the local gravitational field strength.  If we divide both sides by dz and the limit that dz 
approaches zero, we 

find .22lim22lim
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Note that N and V both go to zero as dz approaches zero, but the ratio N/V will remain 
finite and become the local number density of molecules in this limit.  The ideal gas law 

implies that this ratio
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show. 
b.  This is a differential equation with the same form as equations we have encountered in 
previous courses.  The solution is given 

from
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.  To evaluate the pressure at a 

given altitude, we need to calculate the constants in the exponential.  For the molar mass 
of air, 0.029 kg/mol we 

have 14
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which taking 

the inverse gives a scale height of 7980m.  This is the vertical displacement that causes 
the pressure to drop by a factor of e and I also assumed that the temperature is constant at 

this height, but that may not be a good assumption. 0
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Thus at the top of Mount Everest, we have about 1/3 of the pressure found at sea level, or 
33kPa. 
 


