Physics 123 Homework Solutions

Week \#4 Unit T Thermodynamics

T3B. 2

If the volume change is sufficiently small then the gas pressure change will be constant and is given as $\mathrm{P}=95 \mathrm{kPa}$. A volume change of 1% corresponds to $3 \mathrm{~cm}^{3}$ and $\Delta \mathrm{V}=\mathrm{V}_{\mathrm{f}}-$ $V_{i}=297 \mathrm{~cm}^{3}-300 \mathrm{~cm}^{3}=-3 \mathrm{~cm}^{3}$. Thus the work done in an isobaric compression is given by $\mathrm{W}=-\mathrm{P} \Delta \mathrm{V}=(-95 \mathrm{kPa}) *\left(-3 \mathrm{~cm}^{3}\right)=0.29 \mathrm{~J}$. This result is consistent with the idea that a positive amount of work done means energy flowed into the system.

T3B. 6
If the volume of the cylinder is $600 \mathrm{~cm}^{3}$ initially and $450 \mathrm{~cm}^{3}$ finally, while the initial pressure $\mathrm{P}_{\mathrm{i}}=80 \mathrm{kPa}$, we have for an isothermal
process $P_{f} V_{f}=N k_{B} T=P_{i} V_{i} \rightarrow P_{f}=\frac{P_{i} V_{i}}{V_{f}}=80 \mathrm{kPa}\left(\frac{600 \mathrm{~cm}^{3}}{450 \mathrm{~cm}^{3}}\right)=107 \mathrm{kPa}$

T3B. 7

Let the initial volume and pressure of the cylinder be $600 \mathrm{~cm}^{3}$ and 60 kPa respectively, while the final volume is $450 \mathrm{~cm}^{3}$. For monatomic gas, the adiabatic index $\gamma=1.67$, so the final pressure is
given $P_{f} V_{f}^{\gamma}=P_{i} V_{i}^{\gamma} \rightarrow P_{f}=P_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma}=60 \mathrm{kPa}\left(\frac{600 \mathrm{~cm}^{3}}{450 \mathrm{~cm}^{3}}\right)^{1.67}=97 \mathrm{kPa}$. The pressure has increased as we would have expected in a compression.

T3S. 8

Let the initial volume be $800 \mathrm{~m}^{3}$ and the initial pressure is that of the atmosphere $\mathrm{P}_{\mathrm{i}}=$ 1atm. The final pressure is given as $\mathrm{P}_{\mathrm{f}}=0.45 \mathrm{P}_{\mathrm{i}}$. If the monatomic helium expands adiabatically the final volume is given by $P_{f} V_{f}^{\gamma}=P_{i} V_{i}^{\gamma} \rightarrow V_{f}=V_{i}\left(\frac{P_{i}}{P_{f}}\right)^{\frac{1}{\gamma}}=800 m^{3}\left(\frac{P_{1}}{0.45 P_{1}}\right)^{\frac{1}{1.67}}=5100 m^{3}$, and the final temperature is given as (starting at say 295K)
$T_{f} V_{f}^{\gamma-1}=T_{i} V_{i}^{\gamma-1} \rightarrow T_{f}=T_{i}\left(\frac{V_{i}}{V_{f}}\right)^{\gamma-1}=T_{i}\left(\frac{P_{f}}{P_{i}}\right)^{\frac{\gamma-1}{\lambda}}=295 K\left(\frac{0.45 P_{1}}{P_{1}}\right)^{\frac{0.67}{1.6 \gamma}}=82 \mathrm{~K}$. This seems pretty cold (Nitrogen liquefies at 77 K !) The problem is that the expansion is probably not adiabatic over the entire trip the balloon takes to its final altitude. The balloon probably does heat up some.

T3S. 10
a. If the pressure and volume are functions of temperature, then applying the product rule to the ideal gas law we find $\frac{d P}{d T} V+P \frac{d V}{d T}=\frac{d}{d T}\left(N k_{B} T\right)=N k_{B} \rightarrow V d P+P d V=N k_{B} d T$.
b. For any infinitesimal process, the first law of thermodynamics implies that $\mathrm{dE}_{\text {thermal }}=$ $\mathrm{dQ}+\mathrm{dW}$. For an adiabatic process, $\mathrm{dQ}=0$, so $\mathrm{dE}_{\text {thermal }}=\mathrm{dW}$. For an ideal gas, $E_{\text {thermal }}=\frac{f}{2} N k_{B} T \rightarrow d E_{\text {thermal }}=\frac{f}{2} N k_{B} d T=d W$. For an infinitesimal quasistatic expansion or compression $\mathrm{dW}=-\mathrm{PdV}$. Substituting this into the above gives $d W=-P d V=-\frac{f}{2} N k_{B} d T$.
c. So, using the result in part b, we have that $-\frac{2}{f} P d V=N k_{B} d T$, which when plugged into part a becomes $V d P+P d V=N k_{B} d T=-\frac{2}{f} P d V \rightarrow 0=V d P+\gamma P d V$. Dividing by VdV gives $0=\frac{d P}{d V}+\gamma \frac{P}{V}$.
d. Now, multiply by V^{γ} we
get $0=\frac{d P}{d V} V^{\gamma}+\gamma V^{\gamma} \frac{P}{V}=\frac{d P}{d V} V^{\gamma}+\gamma V^{\gamma-1} P=\frac{d P}{d V} V^{\gamma}+P \frac{d\left(V^{\gamma}\right)}{d V}=\frac{d}{d V}\left(P V^{\gamma}\right)$ or $\frac{d}{d V}\left(P V^{\gamma}\right)=0 \rightarrow P V^{\gamma}=$ constant .
e. Using the ideal gas law we
get $0=\frac{d}{d V}\left(P V V^{\gamma-1}\right)=\frac{d}{d V}\left(N k_{B} T V^{\gamma-1}\right)=N k_{B} \frac{d}{d V}\left(T V^{\gamma-1}\right)$ which will be true only if $\mathrm{TV}^{\gamma-1}=$ constant.

