Physics 123
 Quiz \#1 Solution
 September 20, 2006

Name \qquad

1. A light bulb is located 20 cm to the left of a converging lens of focal length 5 cm . The location of the image is
a. 2.3 cm
b. 6.7 cm
c. -7.5 cm
d. -6.7 cm

2a. On the diagram below, draw a ray diagram for the location of the image of the box. The object is located a depth d below the surface and θ_{1} is the angle of incidence of the ray with respect to the normal to the water-air surface.

2 b . Derive an expression for the apparent depth, d^{\prime}, of the box in terms of the actual depth, d, and the indices of refraction, $\mathrm{n}_{\text {water }}$ and $\mathrm{n}_{\text {air }}$. (Hint: Use the fact that for small angles $\sin \theta \sim \tan \theta$, and use Snell's law.)
Snell's Law : $n_{\text {water }} \sin \theta_{1}=n_{\text {air }} \sin \theta_{2} \rightarrow 1.33 \sin \theta_{1}=\sin \theta_{2}$ Defining x as the distance from the normal to the surface to where the ray originates, we can express θ_{1} in terms of d and x and θ_{2} in terms of x and d ' as follows: $\tan \theta_{1}=\frac{x}{d}$ and $\tan \theta_{2}=\frac{x}{d}$. Since the angles involved are small, we can use the small angle
approximation to get $\sin \theta_{1} \approx \tan \theta_{1}=\frac{x}{d} \rightarrow x=d \sin \theta_{1}$ and $\sin \theta_{2} \approx \tan \theta_{2}=\frac{x}{d^{\prime}} \rightarrow x=d^{\prime} \sin \theta_{2}$.
Therefore, $x=d \sin \theta_{1}=d^{\prime} \sin \theta_{2}=d^{\prime} \frac{n_{\text {water }}}{n_{\text {air }}} \sin \theta_{1}$. Thus the apparent depth is given as $d^{\prime}=\frac{n_{\text {air }}}{n_{\text {water }}} d$
2c. If the box is located at a depth of 6 m below the water's surface, at what depth does it appear to be located? $d^{\prime}=\frac{n_{\text {air }}}{n_{\text {water }}} d=\frac{1.00}{1.33} 6 \mathrm{~m}=4.5 \mathrm{~m}$

