Name
Physics 123 Quiz \#2, October 2, 2006

1. 200 g of gold is heated to a temperature of $200^{\circ} \mathrm{C}$ and then is placed in a thermally insulated beaker containing 50 g of water at $20^{\circ} \mathrm{C}$. The water temperature rises to $39.7^{\circ} \mathrm{C}$ and remains there. What is the specific heat of gold, if the specific heat of water $\mathrm{c}_{\text {water }}=4190 \mathrm{~J} / \mathrm{Kkg}$?
$\Delta E_{\text {thermal }}=0=Q_{A u}+Q_{\text {water }} \rightarrow Q_{A u}=-Q_{\text {water }}$
$m_{A u} C_{A u} \Delta T_{A u}=-m_{\text {water }} C_{\text {water }} \Delta T_{\text {water }}$
$c_{A u}=\frac{-m_{\text {water }} c_{\text {water }} \Delta T_{\text {water }}}{m_{A u} \Delta T_{A u}}=\frac{-50 \mathrm{~g} \times 4190 \frac{\mathrm{~J}}{\mathrm{~kg} \times \mathrm{K}} \times\left(39.7^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)}{200 \mathrm{~g} \times\left(39.7^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}\right)}=128.7 \frac{\mathrm{~J}}{\mathrm{~kg} \times \mathrm{K}}$
2. 100 g of diatomic oxygen, O_{2}, is distilled into an evacuated container whose volume is $600 \mathrm{~cm}^{3}$. If the temperature of the gas is $150^{\circ} \mathrm{C}$, what is the pressure of the gas? (Hint: The atomic mass of O is 16 amu , where, $1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$.)

$$
\begin{aligned}
& P V=n R T \rightarrow P=\frac{n R T}{V}=\frac{3.13 \mathrm{~mol} \times 8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \times \mathrm{K}} \times 423 \mathrm{~K}}{600 \mathrm{~cm}^{3} \times \frac{1 \mathrm{~m}^{3}}{(100 \mathrm{~cm})^{3}}}=1.83 \times 10^{7} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}, \\
& \text { where, } n=\frac{N}{N_{A}}=\frac{\left[0.1 \mathrm{~kg} /\left(32 \times 1.66 \times 10^{-27} \mathrm{~kg}\right)\right]}{6.02 \times 10^{23} \frac{\text { molecules }}{\text { mole }}}=3.13 \text { mole. }
\end{aligned}
$$

3. It is possible to "cool" atoms by letting them interact with a laser beam under proper, carefully controlled conditions. Laser cooling is currently a subject of intense research activity, and it is now possible to cool a dilute gas of atoms to a temperature of less than one microkelvin. The atoms are kept from solidifying by their extremely low density. (For more information on laser cooling, you are encouraged to talk to Prof. Orzel.) What is the speed of a cesium atom at a temperature of $1 \mu \mathrm{~K}$, if the mass of a cesium atom is $2.21 \times 10^{-25} \mathrm{~kg}$?

$$
\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} k_{B} T \rightarrow\langle v\rangle=\sqrt{\frac{3 k_{B} T}{m}}=\sqrt{\frac{3 \times 1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}} \times 1 \times 10^{-6} \mathrm{~K}}{2.21 \times 10^{-25} \mathrm{~kg}}}=0.014 \frac{\mathrm{~m}}{\mathrm{~s}}=1.4 \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

Useful Equations and Constants
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \quad \Delta E_{t h}=Q+W$
$\theta_{i}=\theta_{r}$
$W=-\int P d V$
$\theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right) \quad P V^{\gamma}=T V^{\gamma-1}=$ constant
$\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}}+\mathrm{R}$
$n=\frac{c}{v}$
$P V=N k_{B} T=n R T$
$\frac{1}{2} m v_{\text {avg }}^{2}=\frac{3}{2} k_{B} T$
$Q=m c \Delta T$
$Q_{\text {Total }}=\sum_{i=1}^{p} Q_{i}$
$k_{B}=1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}$
$R=8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \times K}$
$N_{A}=6.02 \times 10^{23}$
$C_{V}=\frac{3}{2} R$
$P_{\text {air }}=1 \mathrm{~atm}=1.103 \times 10^{5} \mathrm{~Pa}$
$T(K)=T\left({ }^{\circ} C\right)+273$
$g=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$c=3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$

