Name \qquad
Physics 120 Quiz \#4, February 2, 2007
Please circle the best choice to question 1. For the problems, the parts have the points shown.

1. How much work is done by gravity when a box of mass 5 kg is lifted through a height of 1 m ?
a. 49 J
(b.) -49 J
c. $49 \mathrm{~N} / \mathrm{m}$
d. $-49 \mathrm{~N} / \mathrm{m}$
2. In a home laundry dryer, a cylindrical tub containing wet clothes is rotated steadily about a horizontal axis as shown below. The clothes are made to tumble so that they will dry uniformly. The rate of rotation of the smooth-walled tub is chosen so that a small piece of cloth will lose contact with the tub when the cloth is at an angle of 68.0° above the horizontal.
a. Draw a free body diagram showing all of the forces that act on the piece of cloth at this 68° angle and write equations for the sum of the forces from your diagram. Use the coordinate system provided in the figure. (4)

$$
\begin{array}{ll}
\sum F_{x}: m g \cos 22=m a_{x}=m \frac{v^{2}}{R} & \left(\text { Or: } \sum F_{x}: m g \sin 68=m a_{x}=m \frac{v^{2}}{R}\right) \\
\sum F_{y}:-F_{N}+m g \sin 22=m a_{y} & \left(\text { Or }: \sum F_{y}:-F_{N}+m g \cos 68=m a_{y}\right)
\end{array}
$$

b. What will be the speed of the cloth when it looses contact with the dryer and begins to fall, if the radius of the tub is 0.330 m ? (3)

$$
m g \cos 22=m \frac{v^{2}}{R} \rightarrow v=\sqrt{R g \cos 22}=\sqrt{0.33 m \times 9.8 \frac{m}{s^{2}} \times \cos 22}=1.73 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

c. How many revolutions per minute does the tub make at this speed? (1)

$$
\begin{aligned}
& v=\frac{2 \pi R}{T} \rightarrow T=\frac{2 \pi R}{v}=\frac{2 \pi \times 0.33 \mathrm{~m}}{1.73 \frac{\mathrm{~m}}{\mathrm{~s}}}=1.2 \mathrm{~s} \text { per revolution. } \\
& \# r p m=\frac{1 r e v}{1.2 \mathrm{~s}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=50 \mathrm{rpm}
\end{aligned}
$$

Motion in the x-direction
$x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}$
$v_{f x}=v_{i x}+a_{x} t$
$v_{f x}{ }^{2}=v_{i x}{ }^{2}+2 a_{x} \Delta x$
$F_{x}=m a_{x}$

Vectors
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Forces

$\vec{F}=m \vec{a}$
$\vec{F}_{s}=-k \Delta \vec{x}$
$F_{c}=m \frac{v^{2}}{r}$

Motion in the \mathbf{y}-direction
$y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}$
$v_{f y}=v_{i y}+a_{y} t$
$v_{f y}{ }^{2}=v_{i y}{ }^{2}+2 a_{y} \Delta y$
$F_{y}=m a_{y}$
Useful Constants
$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
QuadraticEquation: $a x^{2}+b x+c=0$; solutions: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Work - Energy
$W=\int_{r_{1}}^{r_{2}} \vec{F} \cdot d \vec{r}=\Delta K E$
$K E=\frac{1}{2} m v^{2}$
$P E_{g}=m g y$
$P E_{s}=\frac{1}{2} k x^{2}$

