Name
Physics 120 Quiz \#5, February 23, 2007
Please circle the best choice to question 1. For the problems, the parts have the points shown.

1. Two children ride on a merry-go-round, with child 1 at a greater distance from the axis of rotation than child 2 . The angular speed of child 1 is
a. greater than child 2 .
b. less than child 2.
C. the same as the angular speed of child 2 .
d. unable to be determined.
2. Consider a relativistic proton moving through a region of space.

2a. What is the proton's rest energy in MeV? (Hint: MeV stands for millions of electron volts, where $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ and the mass of the proton is $1.67 \times 10^{-27} \mathrm{~kg}$.) (2 points)
$E_{r}=m_{p} c^{2}=1.67 \times 10^{-27} \mathrm{~kg} \times\left(3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \times \frac{1 \mathrm{eV}}{1.6 \times 10^{-19} \mathrm{~J}} \times \frac{1 \mathrm{MeV}}{1 \times 10^{6} \mathrm{eV}}=939.4 \mathrm{MeV}$
2b. Suppose that the total energy of the proton is three times its rest energy, what speed is the proton moving. Express your answer as a fraction of the speed of light, c. (3 points)

$$
\begin{aligned}
& E_{\text {total }}=K E+E_{r} \rightarrow K E=E_{\text {total }}-E_{r}=3 E_{r}-E_{r}=2 E_{r} \\
& K E=(\gamma-1) m_{p} c^{2}=2 m_{p} c^{2} \rightarrow \gamma=3 \\
& \therefore \gamma=3=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \rightarrow v=0.943 c
\end{aligned}
$$

2c. What is the kinetic energy (in eV) of the proton in part b? (1 point)

$$
K E=(\gamma-1) m_{p} c^{2}=2 m_{p} c^{2}=2 \times 939.4 \mathrm{MeV}=1878.8 \mathrm{MeV}=1.8788 \times 10^{9} \mathrm{eV}
$$

2d. What is the proton's momentum? (2 points)

$$
\begin{aligned}
& E_{\text {tooal }}^{2}=p^{2} c^{2}+m_{p}^{2} c^{4} \rightarrow p^{2} c^{2}=\left(3 m_{p} c^{2}\right)^{2}-\left(m_{p} c^{2}\right)^{2}=8\left(m_{p} c^{2}\right)^{2}=8(939.4 \mathrm{MeV})^{2}=7.0598 \times 10^{6} \mathrm{MeV}^{2} \\
& \therefore p=\sqrt{\frac{7.0598 \times 10^{6} \mathrm{MeV}^{2}}{c^{2}}}=\frac{2657 \mathrm{MeV}}{c}=1.42 \times 10^{-18} \mathrm{~kg} \frac{\mathrm{~m}}{s}
\end{aligned}
$$

Motion in the x-direction
$x_{f}=x_{i}+v_{i x} t+\frac{1}{2} a_{x} t^{2}$
$v_{f x}=v_{i x}+a_{x} t$
$v_{f x}{ }^{2}=v_{i x}{ }^{2}+2 a_{x} \Delta x$
$F_{x}=m a_{x}$
Vectors
magnitude of a vector $=\sqrt{v_{x}^{2}+v_{y}^{2}}$
direction of a vector $\rightarrow \phi=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)$

Forces

$\vec{F}=m \vec{a}=\frac{d \vec{p}}{d t}$
$\vec{F}_{s}=-k \Delta \vec{x}$
$F_{c}=m \frac{v^{2}}{r}$

Relativity

$L=\frac{L_{p}}{\gamma}$
$\Delta t=\gamma \Delta t_{p}$
$p=\gamma m v$
$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$E_{r}=m c^{2}$
$E^{2}=p^{2} c^{2}+m^{2} c^{4}=\gamma m c^{2}$
$K E=(\gamma-1) m c^{2}$

Motion in the \mathbf{y}-direction
$y_{f}=y_{i}+v_{i y} t+\frac{1}{2} a_{y} t^{2}$
$v_{f y}=v_{i y}+a_{y} t$
$v_{f y}{ }^{2}=v_{i y}{ }^{2}+2 a_{y} \Delta y$
$F_{y}=m a_{y}$

Useful Constants

$g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Quadratic Equation: $a x^{2}+b x+c=0 ;$ solutions: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Work - Energy-Momentum
$W=\int_{r_{1}}^{r_{2}} \vec{F} \cdot d \vec{r}=\Delta K E$
$K E=\frac{1}{2} m v^{2}$
$P E_{g}=m g y$
$P E_{s}=\frac{1}{2} k x^{2}$
$\vec{p}=m \vec{v}$
$\vec{I}=\int \vec{F} d t=\Delta \vec{p}$
Rotational Motion
$s=r \theta ; \quad v=r \omega ; \quad a_{t}=r \alpha$
$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
$\omega_{f}=\omega_{i}+\alpha t$
$\omega_{f}^{2}=\omega_{\mathrm{i}}^{2}+2 \alpha \Delta \theta$
$\tau=I \alpha=r F \sin \theta=\frac{d L}{d t}$
$L=I \omega$
$K E_{\text {rot }}=\frac{1}{2} I \omega^{2}$

