
Physics 111 
Fall 2007 
Reflection, Refraction and Optical Instruments 
 
1. A narrow beam of ultrasonic waves reflects off the liver 

tumor shown on the right. The speed of the wave is 10.0% 
less in the liver than in the surrounding medium. Determine 
the depth of the tumor.  

 
 
 
 

From Snell’s law, 
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so,  . θ = sin −1 0.900( )sin 50.0°[ ]= 43.6°
 

From the law of reflection, 
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2.   The light beam shown in the figure on the right 

makes an angle of 20.0° with the normal line NN’ in 
the linseed oil. Determine the angles θ and θ’. (Note: 
The index of refraction of linseed oil is 1.48.)  

 
 
 

Applying Snell’s law at the air-oil interface, 
 

  yields   nair sin θ = noil sin 20.0° θ = 30.4° . 
 

Applying Snell’s law at the oil-water interface 
 

 yields   nw sin ′θ = noil sin 20.0° ′θ = 22.3° . 
 
 
 
 
 



3.  Consider a convex lens of focal length 20 cm.  Calculate the image distance for each 
of the following object distances: ∞, 4m, 2 m, 1m, 80 cm, 60 cm, 40 cm, 20 cm. 

 
 Here we use the thin lens equation to calculate the image distances 
 

object distance 
(m) 

image distance 
(m) 

infinity 0.20
4 0.21
2 0.22
1 0.25

0.8 0.27
0.6 0.30
0.4 0.40
0.2 infinity 

 
 
4.  A camera has a lens with adjustable position.  The camera depth d = 4 cm.  Determine 

the focal length of the lens and the necessary allowable extension of the lens, x, in 
order that the camera be able to take sharp photographs of objects positioned 
anywhere from 50 cm to infinity, measured from the front surface of the camera 
body.  

 
 
 
 
  
 
 
 

To focus on objects very far away, use do = ∞ and then di = f = d = 4 cm.  So the camera is 
designed to focus at infinity with no extension of the lens.  Then to focus on an object at do = 

50 cm, we need  
1 1
50 4 4x

+ =
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1
, where we have used that f = 4 cm and the image is now 

located at 4 + x.  Solving for x, we find x = 0.35 cm. 
 

a. The focal length is given by the thin lens equation 
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b.  The velocity of the creature is magnified by the lens.  Thus the magnification is 
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dM i .  Thus the magnitude of the velocity on the screen is 

magnified by this same factor.  In the dish the velocity is 1 cm/s therefore the velocity on 
the screen is 12.5cm/s. 
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5.  A movie star catches a reporter shooting pictures of her at home. She claims the 
reporter was trespassing. To prove her point, she gives as evidence the film she 
seized. Her 1.75-m height is 8.25 mm high on the film, and the focal length of the 
camera lens was 210 mm. How far away from the subject was the reporter standing? 

 

We will use two equations: 
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The reporter was standing 45 m  from the subject. 

 
 
6.  A small object is 25.0 cm from a diverging lens as shown in the figure below. A 

converging lens with a focal length of 12.0 cm is 30.0 cm to the right of the diverging 
lens. The two-lens system forms a real inverted image 17.0 cm to the right of the 
converging lens. What is the focal length of the diverging lens?  

 
Working backwards, we use 
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This means that    (10.8 to the left of the diverging lens). So for the 
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7.  A narrow pencil of light strikes the side of a rectangular fish tank at an angle of 30o 

below the horizontal as shown.   
(a) What angle does the light ray make with the horizontal in the glass, assuming a 

1.55 index of refraction? 
(b) What angle does it make in the water? 
(c) If the glass wall is 5 mm thick, by what distance is the exit spot inside the glass 

wall displaced from the location at which the incident beam is aimed? 
 
 
 
 
 
 
 

a.   Assuming that the index of refraction is 1.55, the angle of refraction is given for the light 
ray going from air into glass as:  
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b.  As the ray passes through the glass it will eventually strike the interface between the 

glass and the water at 18.8o.  For water the index of refraction is 1.33 and the angle of 
refraction in the water is given as: 
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   c.  From the drawing we can see that x = 5mm tan(30) = 2.88mm and d = 5mm tan (18.8) = 
1.70mm so that the difference between where the beam strikes and where it is aimed ∆ = 
1.19mm 
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8.   A light ray enters a rectangular block of plastic at an angle θ1 = 45.0° and emerges at 

an angle θ2 = 76.0° as shown in the figure below.  
(a)  Determine the index of refraction of the plastic.  
(b)  If the light ray enters the plastic at a point L = 50.0 cm from the bottom edge, 

how long does it take the light ray to travel through the plastic?  
 

 
(a) Given that  and .  θ1 = 45.0° θ2 = 76.0°

 
Snell’s law at the first surface gives 
 
  n sin α = 1.00sin 45.0° .  (1) 
 
Observe that the angle of incidence at the 
second surface is  β = 90.0° − α .  
 
 Thus, Snell’s law at the second surface yields 
 
    n sin β = n sin 90.0° − α( )= 1.00sin 76.0°
 



 or   n cosα = sin 76.0° .  Dividing Equation (1) by Equation (2), 

 
tan α =
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= 0.729 or α = 36.1° .  

 Then, from Equation (1), n =
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(b) From the sketch, observe that the distance the light travels in the plastic is 
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. Also, the speed of light in the plastic is v =
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to travel through the plastic is 
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9.  A major problem with larger diameter fibers is the difference in travel times of rays 

along a fiber.  In traveling a distance d, the shortest time is that of the axial beam t1 = 
d/v, while the longest time t2 is that of a ray bouncing back and forth along the fiber 
just at the critical angle.  Compute the time difference between these two rays for a 
1.5 index fiber that is 10 km long, surrounded by 1.49 index cladding.  This 
effectively limits the frequency of a signal that can be transmitted without significant 
degradation in larger diameter fibers.  Small diameter (∼10 µm diameter) single-mode 
fibers, in which the light travels as a wave and not as a geometrical ray, overcome this 
problem.  

 
The time for the ray to travel straight through along the axis of the waveguide is:   
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The time for the ray to bounce off of the upper and lower surfaces as it travels down the 
waveguide is found by observing the following.  
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 The ray bounces off of a surface 

µm and in 10,000m there are 11.57x106 bounces.  Thus the ray travels a total 



zig-zag distance along L of 11.57x106 bounces times 870µm per bounce = 10,069m.  The total 

time needed to travel this distance is .3.50)
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Therefore the difference between the two times is 0.3µs. 
 
 
10.  (a) Show that the lens equation can be written in the Newtonian form 

x ′x = f 2 ,  
where x is the distance of the object from the focal point on the front side of the lens, 
and  is the distance of the image to the focal point on the other side of the lens. 
Calculate the location of an image if the object is placed 45.0 cm in front of a 
convex lens with a focal length f of 32.0 cm using (b) the standard form of the thin 
lens equation, and (c) the Newtonian form, stated above. 

x′

 
(a) For the thin lens we have 
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which can be written as 
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(b) For the standard form we have 
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(c) For the Newtonian form we have 

  

x ′x = f 2 ;

45.0 cm − 32.0 cm( ) ′x = 32.0 cm( )2
,  which gives ′x = 78.7 cm.

 

Thus the distance from the lens is 

  di
= ′x + f = 78.7 cm + 32.0 cm = 110.8 cm.  



 
 
11. You are designing an endoscope for use inside an air-filled body cavity. A lens at the 

end of the endoscope will form an image covering the end of a bundle of optical 
fibers. This image will then be carried by the optical fibers to an eyepiece lens at the 
outside end of the fiberscope. The radius of the bundle is 1.00 mm. The scene within 
the body that is to appear within the image fills a circle of radius 6.00 cm. The lens 
will be located 5.00 cm from the tissues you wish to observe.  

(a) How far should the lens be located from the end of an optical fiber bundle?  
(b) What is the focal length of the lens required?  

 
The image will be inverted. With   h = 6 cm , we require ′h = −1 mm . 
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12. Consider the endoscope probe used for treating 

hydrocephalus and shown in the figure on the 
right. The spherical end, with refractive index 
1.50, is attached to an optical fiber bundle of 
radius 1.00 mm, which is smaller than the 
radius of the sphere. The center of the spherical 
end is on the central axis of the bundle. 
Consider laser light that travels precisely 
parallel to the central axis of the bundle and then refracts out from the surface of the 
sphere into air.  

(a) In the figure, does light that refracts out of the sphere and travels toward the 
upper right come from the top half of the sphere or from the bottom half of the 
sphere?  

(b) If laser light that travels along the edge of the optical fiber bundle refracts out 
of the sphere tangent to the surface of the sphere, what is the radius of the 
sphere?  

(c)  Find the angle of deviation of the ray considered in part (b), that is, the angle 
by which its direction changes as it leaves the sphere.  

(d)  Show that the ray considered in part (b) has a greater angle of deviation than 
any other ray. Show that the light from all parts of the optical fiber bundle 
does not refract out of the sphere with spherical symmetry, but rather fills a 
cone around the forward direction. Find the angular diameter of the cone.  



(e)  In reality, however, laser light can diverge from the sphere with approximate 
spherical symmetry. What considerations that we have not addressed will lead 
to this approximate spherical symmetry in practice?  

 
 (a) Light leaving the sphere refracts away from the normal, so light that travels 

toward the upper right comes from the bottom half  of the sphere. 

(b) 
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(c) 
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(d) No ray can have an angle of refraction larger than 90°, so 
the ray considered in parts (b) and (c) has the largest 
possible angle of refraction and then the largest possible 
deviation. 

 All other rays, at distances from the axis of less than 1 
mm, will leave the sphere at smaller angles with the axis than 48.2°. The angular 
diameter of the cone of diverging light is 2 × 48.2° = 96.4° . 

(e) Light can be absorbed by a coating on the sphere and reradiated in any direction. The 
sphere deviates from a perfectly spherical shape, probably macroscopically and surely at 
the scale of the wavelength of light. Light rays enter the sphere along directions not 
parallel to the axis of the fiber. Inhomogeneities within the sphere scatter light. Light 
reflects from the interior surface of the sphere. 

 


