
The Electric Potential 
 
 In the last chapter we made mention of the work needed or required to assemble 

and move charges around in electric fields.  The goal of this chapter is to develop an 

expression for the work done moving an electric charge through an electric field created 

by charges.  We will be assembling collections of point charges and calculating the 

amount of work that is necessary to bring the point charges together.   In doing this we 

want to be able to calculate the energy stored in the system of charges at rest as well as 

calculate the energy associated with a charge as it moves around in an electrostatic field.  

In the last chapter, we also mentioned that we would be making analogies to the work 

done in moving masses around in a gravitational field to help us develop a model that we 

could use to understand the motion of electric charges and the transfer of energy.  Allow 

me to digress for a moment and discuss the work done by the force of gravity on a test 

mass m0. 

 Suppose that we have a test mass m0 and that we place this mass on top of a hill of 

height hA as shown below.   
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The mass is allowed to roll down the hill to a lower height hB.  Here mass m0 feels a 

force, due to gravity, and accelerates in the direction of the applied force from height hA 



to height hB.  Work is done on mass m0 by the force of gravity and the test mass m0 

accelerates from a region of higher gravitational potential to a region of lower 

gravitational potential.  I have not yet defined what a gravitational potential is, but I am 

going to use this term and will define its meaning shortly.  Using the definition of work 

we write , where we define the gravitational 

potential energy at an arbitrary point in the gravitational field to be GPE = mgh.  The 

work done in moving the mass m
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0 from the point at height hA the point at height hB is 

positive, meaning that the system (the gravitational force due to the mass of the Earth and 

m0) did the work moving the mass m0 from hA to hB.  The mass m0 has its potential energy 

converted into kinetic energy as it accelerates from this region of higher gravitational 

potential energy to the region of lower gravitational potential energy.   

In addition, we said that the mass m0 accelerates from a region of higher 

gravitational potential to a region of lower gravitational potential.  Let us now define 

what we mean by the gravitational potential.  We see that the amount of gravitational 

work done depends on the test mass we use.  Let us remove the reference to the test mass 

and define the gravitational potential as the work done per unit test mass, m0, or 
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.  Thus given the mass m0 above, m0 accelerates from a region of high 

gravitational potential (gha) to a region of lower gravitational potential (ghb).  In other 

words, picking the mass up and placing it at a height hA, we have stored energy in the 

system as potential energy.  There is a potential for the mass to convert this stored energy 

into another form, namely kinetic energy, if work is done by the force of gravity on the 

mass m0.  This expression for the gravitational potential is written with the assumption 

that the zero of the potential is taken where the height is zero.  Here we have defined and 



used the gravitational potential only after being able to calculate an expression for the 

work done by the gravitational field on the mass m0.   

Now let’s turn our attention to a test charge q0 in an electrostatic field.  By 

analogy with the force of gravity, given the electric field shown below, a charge q0 will 

feel a force, due to q0’s interaction with the electric field of Q, and accelerate in the 

direction of the applied force from a region of higher electric potential to a region of 

lower electric potential.   
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In this situation, work will be done on q0 by the electric field and the electrostatic work 

done can be written as BAAB EPEEPEW −= .  Here we do not know what the actual 

expression for the electric potential energy, EPE, at this point, but we will derive an 

expression shortly.  However, we can define, in analogy with gravity, the electric 

potential, V, as the work done per unit test charge
0q

WV =  because we want to be able to 

not have to worry about what charge q0 we are moving.  Notice that electric potentials are 

scalar quantities with units of Joules per Coulomb.   Now we need to actually evaluate 

the electrostatic work done on q0, as q0 accelerates from a point located at a distance ra 

from Q to a region rb, where rb > ra.  To calculate the electrostatic work done, we need to 

use a more general definition for the work done by the electrostatic force on q0, since the 

electrostatic force is a position dependant force.  In other words we cannot simply 



multiply the force by the displacement of q0.  Calculating the work for the position 

dependant electrostatic force we find 
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.  Recalling the definition 

of the electric potential given above, we can therefore write for the expression for the 

electric potential due to a point charge Q as
r
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is .  Here we have defined our zero of the potential to be when 

q

( ) ABBAAB VqVVqW ∆=−=

0 is at an infinite distance from Q.  With caution, notice that this definition for the work 

done is written in terms of the difference between where the charge starts and where the 

charge ends up, which is not always the way the electrostatic work is written by textbook 

authors.  Most physicists prefer differences in quantities to be written in final minus 

initial form.  Thus you may also see the electrostatic work written 

as . ( ) BAABAB VqVVqW ∆−=−−=

In addition, we can also write the electric potential energy from our expression for 

the work done on q0 by the electric field due to Q as
r
QqkVqEPE 0

0 == .  More 

generally, a positive charge q will accelerate from a region of high electric potential to a 

region of lower electric potential, losing potential energy while gaining kinetic energy.  A 

negative charge q will accelerate from a region of lower electric potential to a region of 

higher electric potential, losing potential energy and gaining kinetic energy. 

Having defined the electric potential we can now assign to each radius 

surrounding a charge Q, a surface of constant potential, called an equipotential surface.  

For a single point charge Q, the shells are concentric spheres centered on Q and 



extending outward towards infinity as shown below.  In addition, some of the electric 

field vectors for the point charge Q is also displayed.  A relation can be formulated 

between the magnitude of the electric field and the variation of the electric potential with 

distance.  From the diagram below we can see that the electric field vector points along 

decreasing electric potentials and the electric field is everywhere perpendicular to the 

equipotential surfaces surrounding Q.  
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The relation between the magnitude of the electric field and the electric potential 

can be written as
dr
dVE −= , in units of volts per meter, or Newtons per Coulomb.  In 

addition we can show that the electric field has to also be perpendicular to the 

equipotential surfaces.  To show this, assume that the electric field did not cross the 

equipotential surface perpendicular to that surface, but rather at some angle θ, measure 

with respect to the surface.  Since the electric field is a vector, we can break the electric 

field up into components and we will have one perpendicular to the equipotential surface 



and one parallel to the equipotential surface.  Since there is a component of the electric 

field parallel to the equipotential surface, any charge q on the surface will feel a force 

parallel to the surface and will accelerate in the direction of the applied force.  Thus, a 

non-zero amount of work will be done on q by the electric force (and the electric field 

parallel to the surface.)  However, as we will see in the example below, example #2 

specifically, that on an equipotential surface, the work done on the charge is zero.  So 

how do we rectify this ambiguity?  We fix the problem, by removing the component of 

the electric field parallel to the equipotential surface, thus leaving only a component 

perpendicular to the surface. 

Now let’s try to apply what we have developed to solve some problems involving 

work and the electric potential. 

 

Example #1 – What is the electric potential at distances 0.5 m, 1.0 m and 5.0 m from 

a 10 µC point charge? 

Solution – We use the definition of the electric potential due to a point charge.  For the 

given distances we find in order: 
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Example #2 – How much work is done on a charge q0 = 1µC if the charge is moved 

around the equipotential surface located at 5.0m from a 10 µC point charge? 



Solution – We’ll use the potential calculated in Example #1 above for a distance of 5.0 m 

from a 10 µC point charge and calculate the work done using this value.  The work done 

is given as ( ) ( ) JCVVqW , as it should be on 

an equipotential surface.  In other words, it costs neither me nor the system work to move 

a charge around on an equipotential surface, because the potential is a constant on the 

equipotential surface. 
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Example #3 – Moving a charge from one equipotential surface to another. 

a. How much work is done in Example #1 if a 1 µC charge is moved from the 

equipotential surface located at 1.0m to the equipotential surface located at 5.0 m?   

b.   How much work is done if I reverse the process and move the charge from 5.0 m to 

1.0 m? 

Solution –  

a.   The work done is given as 

( ) ( ) JCVVqW C
J

C
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0 +=×−×××=−= − .  The system 

does positive work on the charge and the charge accelerates away from Q.   

b. If the process is reversed, meaning that I move the charge from a location of 5.0 m to 

a location of 1.0 m, the work done is 

( ) ( ) JCVVqW C
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0 −=×−×××=−= − .  The negative 

sign here is a reflection of the fact that the charge will not naturally move toward Q, 

due to the charges having the same sign.  To make q0 move toward Q, I have to do 

work, and this costs me energy.  The energy that I lost is stored in the system as 

potential energy. 



 

Example #4 – The assembly of point charges at the corners of a square. 

How much work does it take to assemble four positive point charges, brought in from 

infinity, one at a time, at the corners of a square with sides of length a? 

Solution – We’ll assemble the charges starting at the origin and proceeding 

counterclockwise until all charges are placed on the corners of the square.  The net 

work is going to be the sum of all of the work required to assemble the charges one at 

a time.  The work to place the first charge is ( ) JVVqVqW originAB 01 =−=∆= ∞ .  To 

place the second charge, at the lower right corner of the square, at a distance a away 

from the first charge, the work is ( ) ⎟
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third charge, at the upper right corner of the square, at a distance a2  from the first 

charge and at a distance a from the second charge 
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The work required to place the last charge at the upper left corner of the square is 
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Therefore the net work is the sum of all of the individual works needed to assemble 

the charges.  Thus we have ( )24−−==∑ a
kqQWW inet . 
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Example #5 – The electric potential due to two point charges. 

What is the total electric potential at a point P located 4m along the positive x-axis for 

the collection of point charges shown below?  Q1 has a value of -6 µC while Q2 has a 

value of 2 µC. 

Solution –  The total electric potential is the sum of the potentials due to the two point 

charges as shown on the diagram.  Since the potential is a scalar quantity, we add 

algebraically the potentials created from each point charge. 

 

 

 

 

 

 

Thus the electric potential at point P is 
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Example #6 – The work done to move place a charge in a potential created by 

point charges. 

How much work does it take to bring in a 3 µC point charge from infinity and place it 

in the potential created at point P of Example #5 due to the point charges Q1 and Q2? 

Solution – The work done is the product of the charge that you want to move and the 

difference in potential from where the charge starts to where the charge ends up.  

Therefore evaluating the work we find 



( ) ( )( ) mJJVCVVqVqW P 9.18109.18103.60103 336 =×=×−−××=−=∆= −−
∞ .  The 

positive sign of the work means that the system will do the work.  If I wanted to 

remove the charge from this location, I would have to do work on the charge equal to 

the negative of the work done by the system. 

 

Example #7 – The electric potential due to an electric dipole. 

What is the total electric potential at a point P located along the positive x-axis 

electric dipole on the x-axis centered on the origin? 

Solution – Given the diagram below, let each point charge be located at a distance a 

from the origin along the x-axis.  The electric potential is the algebraic sum of the 

potentials due to each charge at point P 
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Defining the distance x to be measured from the origin to the point P, we 

have 22
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point P lies very far away from the point charges, we can use x >> a to evaluate the 

electric potential due to the dipole as 2

2
x
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As another example let’s combine the idea of electric potential, electric field and the 

electrostatic force. 

q x QLeft q, +F
r

QRight q, +F
r

Example #8 – Putting together electric forces, fields and potentials. 

What are the net electrostatic force, net electrostatic field, and the electric potential 

for a test charge q = 1.28x10-18 C located at the origin between two positive charges 

Q = 2 µC located equidistant from q at 0.8 m? 

Solution – To calculate the net electrostatic force at the origin we choose the 

coordinate system shown below and draw the forces that act on q.  We find for the net 

force N
a
Qqk

a
QqkFnet 022 =−+= in magnitude. 

The net electrostatic field is given from the force C
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The electric potential at the origin is the algebraic sum of the potentials at the origin 

due to the two point charges located a distance a away.  Therefore we have 
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 Up to now, we’ve calculated electric potentials for collections of point charges 

and we have also calculated the work done in moving charges around in electric fields.  

As a practical application, let’s look at how a particle accelerator works and to do this 

we’ll use the ideas of electric force, electric field, the electric potential and energies 

associated with point charges. 



 

Example #9 – The electron volt as a unit of energy. 

When dealing with elementary charges and atoms, we routinely encounter very small 

values when computing energies.  Physicists have a short hand way of writing these tiny 

energies and this shorthand way is called the electron volt.  Consider a proton being 

accelerated through a difference in potential of one volt.  How much work is done? 

Solution – The work done accelerating the proton (with charge e) through a difference in 

potential of 1.0 V is eVVeVqW 111 =×=∆= , or one electron-volt, labeled as eV.  

However, the magnitude of the charge of the proton is the same as that of the electron, or 

1.6x10-19 C, so and energy of 1 eV corresponds to 1.6x10-19 J.  Now we have a more 

convenient way of expressing very small values of energies in terms of electron volts 

rather than Joules. 

 

Example #10 Rutherford Backscattering Spectroscopy 

An alpha particle (which contains 2 protons and 2 neutrons) passes through the region of 

electron orbits in a gold atom, moving directly toward the gold nucleus, which has 79 

protons and 118 neutrons.  The alpha particle slows and then comes to a momentary rest, 

at a center-to-center separation r = 9.23x10-15m before it 

begins to move back along its original path.  (This technique 

is called Rutherford Backscattering Spectroscopy and the 

alpha particles are usually accelerated using a particle 

accelerator.)   

a) What was the initial kinetic energy of the alpha particle when it was initially 

far away, external to the gold atom?  (Hint: Assume that the gold atom does 

not move since it is much more massive than the alpha particle.) 

b) Given the kinetic energy in part a, through what potential difference was the 



alpha particle accelerated? 

c) How much work was done on the alpha particle in accelerating it through the 

potential difference in part b? 

d) The Union College Pelletron particle accelerator 1.1 MV tandem electrostatic 

accelerator.  This accelerator takes alpha particles and accelerates them two 

times in succession (hence the tandem) and then the alpha particles are 

allowed to interact with the nucleus of a gold atom.  Supposing that the alpha 

particles reach an energy of 3.3 MeV using the Pelletron accelerator, what will 

the center-to-center separation of the alpha particle and the gold nucleus? 

Solution  -  

a. By conservation of energy we have the PE acquired by the alpha particle equal to the 

KE lost as the alpha particle is brought to rest by the repulsive electrostatic force that 

exists between the two positively charges objects.  Therefore we have 
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b. By the work kinetic energy theorem, the work done accelerating the alpha particle is 

equal to its change in kinetic energy.  Thus 
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c. From part b, the work done is the change in kinetic energy,3 . J191094. −×

d. The distance of closest approach is given by the conversion of the alpha particle’s 

kinetic energy into potential energy. 
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This is about a factor of 8x farther away. 

 


