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Naked-Eye Astronomy Lab
Distance and Size of the Sun

Math needed:  only a little trigonometry.

Introduction:

     As you should learn in lecture, the cycle of the phases of the Moon result because of the relative positions of the Moon and Sun.  In this project you will use the phase of the Moon to determine the true geometry of the Earth-Moon-Sun system and hence the relative distances of the Moon and Sun from the Earth.  You will also be able to determine the size of the Sun by measuring its angular size, having determined its distance.

     First, consider how the exact phase of the Moon tells you the direction of the Sun.  Since the Sun lights exactly 1/2 of the Moon, the boundary between the lighted and dark sides of the Moon, known as the “terminator,” demarks the positions that are 90o around the surface of the Moon from the sub-solar point (the point directly below the Sun).  Therefore, if you view the Moon directly in line with the terminator, then the line from the Moon to the Sun must make a 90o angle with your line-of-sight of the Moon, as indicated in the figure below.  As you may be able to tell from Figure 1, when the











Figure 1

observer on the Earth is in line with the terminator on the Moon, he/she sees exactly 1/2 of the moon lit.  So, then, when we see the Moon in exactly a 1/2-moon phase, you know that we, on the Earth, are directly in line with the Moon’s terminator and so the Earth, Moon, and Sun must make a right triangle with the right angle at the Moon (as depicted in the Figure 2 on the next page).  We can, then, just measure the angle at the Earth, , and we can determine the ratio of any two sides by using trigonometry.  By examining the figure, you should be able to convince yourself that you determine angle  by measuring the angle between the Moon and the Sun as you see them.   Knowing ,







Figure 2

then, you get the ratio of the distance of the Moon to that of the Sun by the definition of cosine (adjacent over hypotenuse).  We have, then, 





cos=dMoon/dSun .




(1)

Historical Perspective: 
     Aristarchus, an astronomer residing in Alexandria during the Greek empire, used this method to determine that the Sun is about 20 times further than the Moon.  And, since the Moon and Sun appear to be the same angular size, or we wouldn’t get such perfect solar eclipses, the Sun must be at least 20 times larger than the Moon.  Furthermore, from the shape of the Earth’s shadow on the Moon during lunar eclipses, the Earth was known to not be that much bigger than the Moon, so Aristarchus’ measurements also indicated that the Sun was also significantly larger than the Earth.  Aristarchus did not believe that it was reasonable for such a large object to be orbiting around a significantly smaller one and so proposed a Heliocentric model of the Universe.  His arguments went unheeded, however, and most of his writings have been lost through the years.

Measuring the Angle:

     Fortunately, the Moon is visible in the daylight, so the angle between the Moon and Sun can be measured directly whenever both objects are above the horizon at the same time.

(Note to instructor:  The following describes an easy-to-make apparatus for measuring the angle, but it is very imprecise.  A more precise “home-made” tool is described in the document titled “Camera-Tripod Sextant”.)

     Use a protractor, a long length of string, and a hook as follows (see Figure 3):

1.  Stand near a wall where you can see your shadow and hold up the hook so that you 
can see its shadow on the wall.  You may want to fix the hook still somehow, 
possibly by screwing it into a stick of wood and fixing the stick still.

2.  Wrap the center of the string around the hook once or twice and pull one end of the 
string to the hook’s shadow.  This string, now, is in line with the Sun.  One 
person should hold this string and keep it in line with the hook’s shadow while 
two other people do steps 4 and 5.

3.  The second person situates their eye so that they see the hook in line with the center 
of the Moon, and then pulls the other end of the string towards the center of their 
eye, so that this piece of string is in line with the Moon.

4.  To measure the angular separation between the Moon and the Sun, one needs only to 
measure the angle between these two lengths of string.  Place a protractor over 
the same hook, and while the two ends of the string are held in the proper 
position, lay the protractor against the two lengths of string and read the angle 
between them.

5.  Rotate the positions of the three people and repeat the measurement two more times. 

Average the three readings together and record the exact date and time of the measurement.
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Figure 3

     For this lab, you need very good accuracy...much greater than you can get using the method described above.  Furthermore, it is very difficult to determine exactly when the Moon’s phase is a 1/2-Moon.  The fact that Aristarchus only measured the ratio of the distances to be 20 (when it is, in fact, much greater) shows just how difficult this project is.  To make this project do-able, the instructor will tell you the exact times of the half moon.  By you knowing these times, the greatest source of error has been removed and so you should get a measure the relative distances better than Aristarchus did.  

     To further enhance the reliability of your result, you should also make many measurements at many times.  You will then make use of all these measurements by plotting them.  Making such use of measurements at many different times also will be needed because the chances are that the exact time of half-moon will occur when you can't see either the Moon or the Sun or either (only those on the right 1/4 of the Earth will see both objects at this time).  By measuring the angle at other times and creating a plot, you can infer the value of the angle for anytime.  Depending on the size of your protractor and how well you hold the strings, you probably can't read the angle to better than a degree, in which case you would really need about 100 measurements to get the kind of accuracy that is needed for this project!  That, clearly, is not reasonable, since there are not even that many days in the entire term.  So, I suggest that you make as many measurements as possible all throughout the duration of this lab (which is about two weeks)--whenever the sky is clear and when both the Moon and Sun are visible, make a measurement, being sure to record the date and time.  At the end of the two weeks, the instructor will ask for everyone’s data, collate the data for the whole lab section, and give it back to you to analyze.  The result from the total data set from this many groups, hopefully, will come close to the number you need for this lab to succeed.

(Note to Instructors:  Since the Moon’s orbit is tilted relative to the ecliptic, that position of the Moon relative to the Sun is not a simple sinusoid.  Therefore, fitting a straight-line to the Moon-Sun angle vs. time is really only appropriate for the two week period bracketing the moment of ½-Moon.)

Making the Plot

     Your plot should have angle on the y-axis and time on the x-axis.  The first question that may come to your mind is "how do you plot times AND dates on one axis?"  Some plotting programs (such as Excel) will do this for you.  If you don’t have access to such a program, you should convert all your dates and time to numbers (with decimals) of hours or days.  That is, choose some day and time to be time 0.   And then each second is a 1/60 of a minute and each minute is a 1/60 of an hour.  Similarly, each day is another 24 hours. 

     When you have all your numbers ready for plotting, put them into a computer plotting routine, such as Excel (this can be done in lab, if everyone brings their data), and have the program determine the best fit line for the data.  Your program should give you an equation for that line in the form y=mx+b.  If you plotted the angles on y axis and the times on x, then you need only to determine what x corresponds to your half-moon time, put it into the equation for the best-fit line and solve for y.  This is your angle between the Sun and Moon at the half-moon, or angle  in figure 1.  

     Your final value of , hopefully, is less than 90o.  If not, then you can go no further.  Think of what it means in Figure 1 if  is greater than 90o.  You can not have a triangle with more than 180o.  So, your answer, then, would have no physical significance and your conclusion, and what you should say in your report, is that this experiment is not do-able with the measuring method used.  A more sensitive device is needed.  If your final angle is less than 90o, follow through the analysis using equation (1) to find the distance of the Sun.

     Now, you can also infer the diameter of the Sun.  In principle, the actual size of an object is related to its angular size and its distance (see your text).  If  is the angular size, D is the diameter, and d is the distance, then 






(in radians)=D/d.  

However, DO NOT measure the angular size of the Sun directly (I don’t want you to lose your eyesight just for this lab).  Because of the fact that we get such wonderful solar eclipses, we know that the Sun has the same angular size as the Moon, so you need only to measure the angular size of the Moon and use that in the equation above.  

    If you have already done the “Size and Distance of the Moon” lab, then you already have a measure of the angular size of the Moon.  If not, the following is a description of how to measure the angular size of the Moon (taken directly from the handout for the Moon lab):

     To measure the angular size of the Moon you make a “cross-staff.”  Imagine holding up a ruler to the sky at arm's length, which is about 70 cm, and measuring the apparent distance between two objects.  Suppose you measured the apparent distance to be 2 cm.  What you found is that the angular separation between the two objects is the same as that of the 2 cm markings on the ruler held at a distance of 70 cm.  Since you know the actual size and distance of the latter, you know what that angle is.  By the small angle approximation it is  (radians) ~ 2cm/70cm.  To make this measurement more reliable, rather than measuring the distance from the ruler to your eye each time, thumbtack the ruler to the end of a stick whose length you know and then make the measurement by holding the other end of the stick against your cheek just below your eye. 

     (You can be clever about your choice of stick.  Since you can cut a stick to any length, you can choose a length that would be most convenient.  For example, choose a length where one centimeter on the ruler equals one degree of angle.  That is 1cm/(length of stick)=1 degree.  The small angle approximation must be in radians, so convert the 1 degree to radians, and solve for the length of the stick.  What do you get?  _________.  Another way of viewing this is to imagine that the ruler at the end of the stick is part of a circle that is centered on your eye.  If one centimeter on the ruler is to correspond to one degree, then this circle must have 360 cm around the circle, meaning that its circumference is 360 cm.  Since the center of the circle is at your eye the length of the stick is equal to the radius of the circle.  Therefore, the length of the stick that you want is equal to the radius of a circle of circumference of 360 cm.  Using the fact that the circumference of a circle is 2R, you can solve for the R, to find the desired length of the stick.  You should find the same answer that you got above.)
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