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Abstract
I have used Mathematica to model the gamma ray flux emissions from evaporating primordial black holes (PBHs) at extragalactic distances assuming the standard model of particle physics and current cosmological models.  One method to test the existence of PBHs is to graph the relative number, N, of exploding primordial black holes vs the flux, S, at which they would be detected.  Our model suggests that the emitted gamma ray bursts at energies of 10s to 100s of MeV will fit a log(N) vs. log(S) curve with a slope of -1.39 at the high flux end.  A second method to prove or disprove the existence of primordial black holes is to create a “light curve” which is a graph of flux vs time for a given exploding primordial black hole.  I have compiled a flux vs time curve for the last hour of an individual primordial black hole’s life.  At energies in the 10s to 100s of MeV range, log(flux) vs log(x), where x is the time before evaporation, has a linear fit with a slope of 0.331. 
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I. Introduction

A. General Introduction and Motivation

In 1974, Stephen Hawking theorized that black holes may not be completely black1.  Through quantum fluctuations in the vicinity of a black hole’s event horizon, a black hole might actually radiate.  Hawking Radiation, as it was dubbed, would be a way that a black hole could lose mass, which ultimately leads to these questions:  what happens to a black hole as it radiates away all its mass, what would this look like, and more importantly, how many black holes are doing this right now?  As will be shown later, dying black holes would have to be of truly insubstantial mass.  A modern day exploding black hole would have had to be created at the start of the universe and have an initial mass of merely ~1015 g, the mass of a mountain on earth.  This black hole would have a Schwarzschild radius, the radius of a black hole’s event horizon, of ~1.48x10-12 m, 1/100th the size of an atom.  At the instant of its creation, it would have an effective temperature of ~1.2x1011 K, ~7500 times hotter than the core of our own sun.  As this black hole lost mass, it would become even hotter.  About 10% of the energy would come in the form of gamma radiation, a photon with energy greater than 104 eV.  The final phase would involve ~1031 ergs of energy coming out in the final second.
But where would these low mass black holes come from?  There is no process in the current epoch that could plausibly create such low mass black holes.  Models by Carr and Hawking2 predict that during the first instants of the universe, when the density was very great, slight inhomogeneities in the universe could have formed black holes.  The initial mass function for these “Primordial Black Holes” (PBHs) is bounded on the lower end by 10-5 g and has an unknown upper bound.  It has been postulated that these could be the black holes that seeded the formation of galaxies.3  It is therefore of great importance to prove or disprove the existence of these PBHs.  Such a discovery could give insight into fields such as cosmology, particle physics, and quantum gravity.  The goal of this project is to provide a theoretical model of the relative number of exploding PBHs vs the flux at which they would be detected.

This method was explored by Cline, Sanders, and Hong4 fitting the BATSE 3B Catalogue and ignoring cosmological effects.  Burst And Transient Source Experiment was one of the gamma ray telescopes on the Compton Gamma Ray Observatory, which was launched in 1991.  Due to BATSE’s relatively low sensitivity, Cline et al focused on gamma ray bursts limited to within a few parsecs from our Sun.  With the launch of GLAST (Gamma-ray Large Area Space Telescope) scheduled in 2007, detection of -ray bursts from more distant exploding PBHs might be possible. 
I will begin with a cosmology background in section IB.  I use the Friedmann equation and move towards solving for the proper distance and luminosity distance, dp and dL respectively.  In section IC I deal with Hawking radiation and develop the mass loss equation for a black hole.  In Section ID I give a brief background into PBHs or rather, black holes created in the first instants of the universe.  In section IIA I calculate the luminosity of an evaporating PBH as a function of luminosity distance and time before evaporation.  In section IIB I calculate the relative number of PBHs as a function of proper distance.  I put together sections IIA and IIB to build the LogN - LogS curve in section IIC.  In section IID, I will develop the flux vs time curve for a given PBH.  The Appendices provide a short lemma and the Mathematica codes that I used for my project.

B. Cosmology Background  
The first part of this project involves finding the flux of radiation energy for a given exploding black hole.  We can derive the flux by considering a luminous object placed at the center of a sphere with radius d.  The flux that we measure is then simply the luminosity of the object, divided by the surface area of the spherical shell that the luminosity spreads out on.  So then,

[image: image1.wmf]2

4

d

L

S

p

=

 ,





(1)

where L is the luminosity of the object and d is the distance.
We need to apply two corrections to the distance in equation 1 due to the expansion of the universe.  Observations made by Edwin Hubble and Milton Humason in 1929 revealed that our universe is expanding outwards uniformly.  Hubble and Humason found that an object’s recessional velocity (the velocity at which other objects recede from us) is proportional to the distance of the object so that
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where v is the recessional velocity, H is the Hubble constant, and d is the distance traveled.  Thus, due to the Doppler effect, the light that we receive that was emitted from far away will be shifted to lower frequencies and hence lower energies.  Additionally, the rate at which photons arrive will be decreased.  With redshift defined by the parameter z such that,
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we account for both of these effects by multiplying the flux by two factors of 1/(1+z).
Alternatively we can absorb these factors into the distance in equation 1.  One defines the luminosity distance as the distance from an object as measured by light using flux vs. luminosity.  Then, dL is simply some proper distance dp multiplied by (1+z).
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Then to find the flux for a black hole that exploded at a given time te we will need the luminosity as a function of te, (1+z) as a function of te, and the proper distance as a function of te.

To find the proper distance we first introduce a coordinate system that is independent of time.  The co-moving coordinate system fixes a location to objects regardless of the relative size of the universe.  As time moves on and the universe expands, these coordinates remain constant even though they are now much further apart.  See Figure 1 for a Cartesian description of co-moving coordinates but bear in mind future discussion will use spherical coordinates.

Consider that we freeze the expansion of the universe and measure our distance from an object.  This is called the proper distance.  From Figure 1 it is clear that the proper distance from an object is simply the fixed co-moving distance between the observer and the object, r, multiplied by a scale factor R(t) that describes the relative size of the universe at time t.  Then the proper distance for light received now is
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where R0 is the scale factor of the universe today.
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In Figure 1 points A and B are defined by the co-moving positions (xa,ya,za) and (xb,yb,zb), respectively.  As space and the proper distance between the two points expands, points A and B are still defined by their co-moving coordinates (xa,ya,za) and (xb,yb,zb).
Due to the uniform expansion, light that was emitted at a time te when the scale factor was R(te), will have a redshift given by
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Before we can proceed we will need to solve for the scale factor.  To do this we will use the Friedmann equation.  The mathematics that account for an expanding universe had been developed in 1922 by Aleksandr Friedmann, a Russian cosmologist.  Friedmann derived a solution to Einstein’s General Relativity equations that allowed for the expansion of the universe assuming a homogeneous and isotropic universe,
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where R(t) is the scale factor of the universe at a time t, R0 is the current scale factor of the universe, G is Newton’s Universal Gravitational Constant, c is the speed of light, is the cosmological constant, k is the spacetime curvature parameter, and  is the energy density of the universe today.  This ignores the contribution of radiation since the present epoch is dominated by matter and the cosmological constant.
There can be only three values of k: +1,0, and -1.  A k = 0 universe corresponds to a flat Euclidean geometry, k = +1 represents spherical geometry, and k = -1 a hyperbolic geometry.  If you consider we have one line, in spherical geometries you cannot draw a line parallel to it as at some point they will intersect.  Euclidean geometries allow only 1 parallel line to be drawn, while hyperbolic geometries allow an infinite number of parallel lines to be drawn.

From studies of the cosmic microwave background we now believe that the universe is flat.5  Knowing this allows us to solve for the scale factor at a given time.  We begin with the Hubble law.  Recall equation 2 and substitute the proper distance for the distance d,
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Solving equation 9 for H yields,
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Substituting equation 6 in for the proper distance,
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Substituting this into equation 8 leads to,
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Rearranging this equation to isolate the terms with 0 and , the measures of the contents of the universe, on one side
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The two terms on the right are generally simplified to single parameters given by 





[image: image18.wmf]2

0

2

0

3

8

H

c

G

M

e

p

=

W

 and 
[image: image19.wmf]2

0

3

H

L

=

W

L

.  
So, the Friedmann equation becomes
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From equation 17 it is clear to see that if the total ), henceforth T, is equal to one then k must = 0, if T > 1 then k must be +1, and if T <1 then k must be-1.  Substituting for k=0 and for 
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Solving this we find,
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Currently, astronomers believe that  H0 = 70 km/s/Mpc6, 
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6.  These values have been recently determined with observations from the Wilkinson Microwave Anisotropic Probe (WMAP), the successor to COsmic Background Explorer (COBE).  A solution for R(t) is given by Peebles .8  Peebles’ solution to the integral in equation 21 is verified in appendix A.  Substituting in Peebles’ solution,
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and manipulating to solve for R(t),
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According to this solution, at early times R(t) was dominated by a 
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 term, representing a slowing rate of expansion.  In the current epoch  dominates yielding an exponentially increasing rate of expansion.
Now, to obtain expression for comoving distance, r, we use the Robertson-Walker Metric.  The Robertson-Walker Metric describes the world lines, or geodesics, from one point to another in a curved and expanding space-time assuming a homogeneous, and isotropic universe.9  A geodesic, ds, in the Robertson Walker metric is given by
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where r is the co-moving radius,  represents the angular measurements, and k is the spacetime curvature parameter of the universe.
By definition the motion of any massive particle falls in a timelike geodesic, that is, it has 
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.  This is because particles are limited to moving slower than the speed of light.  Likewise, a null geodesic is the worldline of a photon and corresponds to 
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 and a speed of c.  A spacelike geodesic has a 
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 and is interpreted as faster than light travel.  Since we are interested in the detection of photons that were emitted at earlier times we will consider null geodesics.  Also, by putting ourselves at the origin, we can disregard the angular components and consider photons traveling radially.  In a flat Friedmann universe the Robertson-Walker Metric then reduces to

[image: image35.wmf]2

2

2

2

2

)

(

0

dr

t

R

dt

c

ds

+

-

=

=

,



   (25)
where R(t) is given in equation 23.  Solving this we derive an expression for co-moving distance, r,
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                 (27)
where t0 is the current age of the universe and te is the time the light was emitted.   Substituting the r we found in equation 27 into equation 6 we find the proper distance of an object which emitted light at a time te and which we receive today, to
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This relation depends only on the time the light was emitted using the R(t) in equation 23 and can be solved numerically by Mathematica.
C. Hawking Radiation
In 1974 Stephen Hawking, contrary to the belief held at the time, proposed that black holes actually do “produce” radiation through a quantum process1.  He proposed that black holes have an effective temperature dependent on their surface gravity and thus the inverse mass of the black hole.


[image: image39.wmf]1

3

8

-

µ

=

M

GMk

c

T

BH

p

h






 (29)

This was a revolutionary and controversial result as no-one had ever been able to merge quantum mechanics and general relativity.  Quite possibly the most remarkable part is that this radiation produced was shown by Hawking to be a blackbody spectrum!1
The process by which particles and radiation are produced is detailed in Figure 2.  Everywhere in empty space, the Heisenberg uncertainty principle allows for the spontaneous generation of particle anti-particle pairs provided one rule: the larger the energy violation, the shorter the time that they may exist.  These vacuum fluctuations have been confirmed experimentally and are an unavoidable consequence of the Heisenberg uncertainty principle. 
Consider now we are located very close to the event horizon of a black hole.  A particle, anti-particle pair created would experience different forces because they are at slightly different distances from the center of the black hole.  This could lead to one of the pair falling into the hole while the other escapes away, becoming a real particle.  Conservation of energy would have been violated, so it is clear that something must pay for this particle creation.  Volume in the black hole must therefore lose energy which translates into a loss of mass.  Any particle/anti-particle pair could be formed so long as the black hole’s tidal forces are strong enough to separate the pair in the time they exist.
There could be several ways to detect an evaporating black hole: detection of the gamma radiation, detection of charged particles, or possibly the detection of neutrinos produced.  Charged particles that were produced would be influenced by the black hole’s magnetic field, and they would be deflected, thus they are not a good way to search for evaporating PBHs.  Likewise any antimatter produced would be deflected until eventually annihilating with a piece of matter that is located around the hole, once more creating additional photons.  One may guess that you should be able to find some proton anti-proton annihilation lines from an evaporating 
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Particle Creation via the Hawking Process
black hole but this is not the case.  Since the particles are created with a velocity distribution, the energy produced in annihilation will be different for each annihilation.  Thus, you will not be able to see the annihilation radiation as discrete lines.  Even though the majority of energy released will be in the form of neutrinos, they do not serve as a good method for detection.  Neutrino detectors are in their infancy and only one confirmable cosmic event has been detected, SN 1987A.  There is a difference of ~1023 ergs of energy released in neutrinos between SN 1987A and an evaporating black hole.  Detecting the electromagnetic radiation from an evaporating PBH is the only plausible way that we can hope detect these black holes in the near future.
The inverse mass dependence of the temperature of the radiation happens because lower mass black holes have stronger tidal forces.  The stronger the tidal force of the black hole the smaller the t that a pair of particles can be separated.  Because the t is smaller the E violations that can be separated can be larger which results in more massive particles or higher energy photons escaping to infinity.  The end result is a higher effective temperature of the black hole. 

The inverse mass dependence leads to an interesting consequence.  If a black hole was not terribly massive (making it “hot”) it could radiate more energy than it absorbed.  By radiating more mass than it absorbs it becomes even hotter.  A runaway process develops and in the final stage a burst of gamma rays, charged particles, and neutrinos is emitted.  Since the spectrum is blackbody, we can approximate its bolometric luminosity with the Stephan-Boltzmann law.
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where k is the Boltzmann constant and 0 is the particle degrees of freedom, which accounts for  the number of species of particles that the black hole can emit.  The particle degrees of freedom can be viewed as an effective increase in the surface area of the black hole and so enters into the luminosity.  It is slightly temperature dependent but if we consider a black hole with high temperature it can be considered constant to a good approximation.  Through the definition of luminosity and the mass-energy relation a mass differential equation can be developed.
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Substituting in equation 30 results in
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where
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where Mi is the initial mass of the black hole.  The standard model of particle physics predicts 
[image: image48.wmf]26

10

8

.

7

x

=

a

 for all known species of elementary particles.7  Plotting this equation, as shown in Figure 3, shows that this is in fact a runaway process and in the last moments of its life, a black hole expends an enormous amount of energy.  With 1 second remaining the black hole produces 1.19x1031 ergs of energy of which 10% is gamma radiation.  These explosions of gamma radiation might be visible to us here on Earth.

Solving for the effective temperature equation for a one solar mass black hole yields a temperature of   ~10-8 K, which is much less than the background temperature of 2.7 K and so such a blackhole will absorb more energy from the cosmic background radiation then it would emit through Hawking radiation.  A one-solar mass black hole would never evaporate.  Currently, the mass of a black hole that would emit more than it would absorb would need to be less than ~1024 g.  In our current epoch the least massive black holes that can be formed are at least ~3 solar masses, or 6x1033g.  Clearly, all black holes being formed currently will never evaporate.  As we will see in the next section, primordial black holes could have been created with low enough masses so that they may evaporate in the age of the universe.
As shown in Figure 3, it takes the age of the universe, approximately 13.5 Gyr, for a 1015-g black hole to evaporate and as you can see in Figure 4 it takes nearly 300 kyr, about the age of the universe at recombination, for a 1013-g PBH to evaporate.  As demonstrated in Figures 3 and 4, since recombination only two orders of magnitude in the initial masses of PBHs have evaporated.  The recombination epoch is when the universe was finally cooled enough to form atoms.  Any gamma rays produced before recombination would have been scattered and reprocessed by free electrons and ions, so all information from before recombination is lost.  Since recombination however, the universe has been effectively transparent (optical depth of 0) to gamma rays.  Therefore, for this study we need only consider the evaporation of black holes of masses 1013 to 1015 g.
[image: image49.png]Figue 3
Mess @) Mass os & Function of Tire

1104

8x10"

6x10%

4x10%

210"

Tine Gy)




A plot of mass vs time for a 1015 g black hole losing mass due to Hawking radiation.  This plot ignores radiation falling into the black hole (a good approximation). This black hole loses all of its mass in 4.27x1017 s (13.5 gyr) the current age of the universe.
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A plot of mass vs time for a 2.8x1013 g black hole losing mass due to Hawking radiation.  This plot ignores radiation falling into the black hole (a good approximation).  This black hole loses all of its mass in 300 kyr, the age of the universe at recombination.

D. Primordial Black holes

It is possible that early in the universe (before the end of the first second), while the density of matter and energy was still very high, that black holes could have formed from slight inhomogeneities in the density distribution.  These inhomogeneities could have formed black holes of any mass larger than 10-5 g.2  If we could prove that primordial black holes do exist, it would give us great insight into the early universe and provide a theory for the origin of super-massive black holes.  Supposing a black hole of mass 1015 g (about the mass of a mountain here on earth) were formed it would have had an initial effective temperature of 1.18x1011 K and would be evaporating at this very moment.  A black hole of this mass would have had a Schwarzschild radius of 1.48x10-12 m.

Carr2 proposed that the initial mass function, the relative number of PBHs of each mass created, was a simple power law:

[image: image51.wmf]f

f

m

m

m

h

+

+

-

-

µ

µ

1

4

2

)

(

g

. 



(36)
Here f is the equation of state given by 
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P

f

=

 where P is the pressure and  is the density of the universe at the time of the PBH’s creation.  A problem arises because a 1015-g PBH would have been created at 10-23 s after the big bang, which is the exact changeover to the hadron era.  In the hadron and other radiation dominated eras f = 1/3, however before that the equation of state is unknown.  Recall that since recombination we have seen only two orders of magnitude in change in initial PBH mass.  Thus, the initial mass function should not have a large effect on our results as will be shown later in the paper.  For now however, we assume that f = 1/3 which implies that
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One more question must be addressed before we can develop the PBH Luminosity function: do PBHs rotate?  To answer this we must consider why black holes might rotate in the first place.  Black holes could rotate for three reasons.  First a black hole might rotate because of conservation of angular momentum and the large contraction that takes place from star to black hole.  Second they were formed from two dense objects (white dwarfs, neutron stars, or black holes) spiraling into each other.  Lastly they may spin because they are accreting matter.  With a PBH however, if you consider the horizon size of a PBH at 10-23 seconds after the big bang you will see that a PBH does not contract very much.  Even though the PBH will conserve its angular momentum the small amount of contraction will result in a slowly spinning (if at all) PBH.  The second possible cause for rotation is that two small PBHs could be in a decaying orbit that eventually leads them to merge into a larger PBH.  Due to the low masses of the PBHs we are interested in and thus, low gravitational field, a sustainable orbit between two PBHs is unlikely.  The final possibility is that PBHs are spun up by accretion of matter.  Again, due to the low gravitational field of a tiny-mass PBH, it should not accrete much matter.  Thus, a PBH should be rotating very slowly if at all.  This will simplify the math we will do in the next section.  We can use the Schwarzschild solution for black holes and avoid the complications of the Kerr-Newman solution entirely.  
II. Calculations

A. Luminosity and Flux of Black Holes Exploding at Each Epoch

In this section I will discuss how I calculate the gamma ray flux of an evaporating black hole.  Recall from equation 1 that flux is directly proportional to the luminosity of an object. Luminosity is measured in units of power (ergs/s in cgs units).  To find the detectable flux of a burst we must calculate the luminosity of the burst in an observable energy range.  Since the radiation emitted will be black body, the luminosity of our black hole when at a temperature T is given by the following
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where
[image: image55.wmf])
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 is the Planck blackbody function, (SA)BH is the surface area of the PBH at the time of emission, 0 is the particle degrees of freedom, and max and min are the limits of the chosen energy range.  There are 4 steradians in a sphere and since the black hole will emit particles and radiation isotropically it must be accounted for.  By using the Schwarzschild radius in the surface area of the black hole we see that the surface area is related to mass.  So then, as the black hole loses mass, its surface area decreases.
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Here it is useful to introduce the mass of the PBH in a sort of backward time notation.  Choosing different limits for equation 34 produces the desired effects.
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where 
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 is the time where the black hole completely evaporates.  Then defining a time parameter, x, as the time left before explosion
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yields,
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This equation has no dependence on Mi nor the time th only x, the time left in the PBH’s life.  I must stress that this time consideration is independent of the time the light was emitted.  That is, the death of each PBH looks the same.  Substituting equation 42 into equation 38 gives the surface area of the black hole as a function of x.

[image: image62.wmf]4

3

2

2

)

3

(

4

4

)

(

c

x

G

SA

BH

a

p

=




           (43)
Substituting this into equation 37 gives the luminosity as a function of x
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where, 
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. Note that the integral also depends on x since T depends on x.
Since the goal of this paper is to establish what our detectors would see, the values of min and max are free parameters that we choose to match to a -ray telescope’s limits.  For this paper I have chosen the energy range of 100MeV to 1GeV to match that of GLAST, the newest - ray telescope.  This energy range corresponds to max=2.42x1023 Hz and min=2.42x1022 Hz.  However, as light has been redshifted since it has been emitted and we are on the Rayleigh-Jeans side of the Planck curve peak, the observed flux will have been emitted at higher frequencies and closer to the peak.  This means our detector will see a brighter luminosity for light emitted longer ago.  The process of correcting for the redshift of the emitted spectrum into the observed window is also known as k-correction.  This is depicted in Figure 5.
Note though that the temperature and x in equation 44 are dependent on how much time is left in the PBH’s life.  The most accurate average is to integrate over a relevant time.  If we look at bursts on the order of 0.1 s we should pick 0 and 0.1 as the limits of our integration.
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A nearby evaporating PBH would emit a blackbody spectrum similar to the blue spectrum.  Its average luminosity in a frequency range is proportional to the area under its curve.  A PBH exploding longer ago will have its spectrum red-shifted such that the area under its curve is larger and so it will appear brighter to us.
In order to consider PBHs as sources rather than bursts, on the other hand, we must fix te and we can use equation 44 directly to find the luminosity at a given time x from explosion.  This will be explored further in section II D.  For a burst of 0.1 seconds then,
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Inserting L from equation 44 and solving yields,
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Substituting in for T from equation 29 and M from equation 42 and solving the integral in the denominator gives,
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with CA as defined above and 
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.  This average luminosity can be numerically integrated in Mathematica.
With the luminosity and dL calculated we can now calculate the flux we should receive from exploding PBHs as a function of the time of emission, te.  Now all that remains is to calculate how many PBHs should be exploding as a function of te.
B. Number of PBH’s Evaporating at Each Epoch

I begin by considering a spherical shell of radius dp extending outwards from earth.  If we add a thickness dp we have created a spherical shell with volume 
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The number of PBHs exploding in this volume is then simply the number per unit volume of PBHs that would be exploding at that epoch multiplied by our spherical shell volume.  However we must also take into account the IMF of PBHs and that at the time of emission this spherical shell volume was smaller by the scale factor cubed.  So then,
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where 
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is a combination of the number per unit volume and the IMF of PBHs.  We assume that the IMF is based only on Mass and the number per unit volume depends only on the time of emission.  Recall that the IMF of PBHs is a simple power law with index gamma.
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Consider the spherical shell volume that exists between the dp and dp.  This volume multiplied by the number/unit volume will yield a number of exploding PBHs at a time te
where A is some arbitrary number in a volume.  For this study we can take A=1 as we are only concerned with the relative number of PBHs that evaporate at each time te.  From equation 35 we see that the initial mass black hole that would be exploding at some time te (i.e. M(te)=0) is given by 
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Note that the factors of 
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C.  Bursts


Now that we have calculations for both the N(te) and S(te) we can plot N(S).  We will assume a burst length of ~0.1s.  However, due to integral divergence at 0, the best we can do with our numerical integrator is to pick some arbitrarily small lower limit.  For this case I have chosen 10-27s, the time when the mass of the black hole would be 
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 g.  This plot is shown in Figure 7 for f = 1/3 and the energy range between 100MeV to 1GeV matching the limits on GLAST.
The standard definition of a LogN-LogS curve is N(>S), rather, the number of detections with a flux greater than this S.  Figures 8-11 show N(>S) vs S for f = 0,1/3,2/3, and 1.  Due to the small range of initial masses of PBHs that have exploded since recombination to the present it is clear that the effect of the equation of state matters little to our results.
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Relative Number vs Flux for an Energy range of 100MeV – 1GeV with equation of state=1/3
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Relative Number with Flux greater than S vs Flux for an Energy range of 100MeV – 1GeV with equation of state f=0
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Relative Number with Flux greater than S vs Flux for an Energy range of 100MeV – 1GeV with equation of state f=1/3
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Relative Number with Flux greater than S vs Flux for an Energy range of 100MeV – 1GeV with equation of state f=2/3
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Relative Number with Flux greater than S vs Flux for an Energy range of 100MeV – 1GeV with equation of state f=1

The jump that occurs in Figures 8-11 is due to the turnaround in flux that is seen in Figure 7.  At a redshift of z =10, dp (as a function of z) becomes nearly constant.  This happens because when we look further back in time we look at a smaller universe.  Since the universe is smaller and the speed of light remains constant, the light can traverse a larger percentage of the universe.  So, at larger look back times (smaller te) the increase in dp gets smaller.  At z ~ 10, since dp is nearly constant dL becomes nearly constant.  And since, we are on the Raleigh-Jeans side of the Planck curve, the redshift causes L to increase with smaller te.  The result is an increase in S(te) with additional increases in lookback time.  This leads to a bend in N(S) and the large jump seen in N(>S).

Finally we have arrived at our result, fitting the high flux end of log(N>) vs log(S) we see that for f = 1/3, a first order fit is
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[image: image86.wmf]39

..

1

-

µ

S

N

 for the highest 30 fluxes.  While the “lower leg” appears to be a straight line in a log-log scale it is not.  Note that the fluxes here are very small, much lower than the lower limits on current gamma ray telescopes.
A. Sources


PBHs could feasibly also be detected not only by their bursts, but also by their emissions as continuous sources well before their moment of explosion.  For any given z we can make equation 44 depend on only x, the time before PBH evaporation.
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with CA and CB defined as above in equations 44 and 47.  Substituting this into equation 5 yields a flux equation with dependence only on the time left in the PBH’s life.  Figures 12-15 show S(x) for the last hour of a PBH’s life at z=0.5, 1.0, 2.0, and 3.0.
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Plot of Flux vs time before complete evaporation for z = 0.5 in the 100MeV – 1GeV energy range.  Strangely the evaporating PBH has higher luminosity the further from evaporation.
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 Plot of Flux vs time before complete evaporation for z = 1.0 in the 100MeV – 1GeV energy range.  Strangely the evaporating PBH has higher luminosity the further from evaporation.
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 Plot of Flux vs time before complete evaporation for z = 2.0 in the 100MeV – 1GeV energy range.  Strangely the evaporating PBH has higher luminosity the further from evaporation.
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Plot of Flux vs time before complete evaporation for z = 3.0 in the 100MeV – 1GeV energy range.  Strangely the evaporating PBH has higher luminosity the further from evaporation.
Fitting these curves leads to a surprising result, in the energy range of 100MeV-1GeV 
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!  This model indicates that the further from the “burst” we are, the higher the flux we will detect.  This result is counter-intuitive because if you consider that 
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The explanation lies in equation 53.  There are two competing factors that affect L(x).  As the PBH loses mass the surface area decreases as x2/3 and the temperature rises by x-1/3.  The key is that our observed energy window is far on the Rayleigh-Jeans side of the Planck Curve.  Because of this the decreasing surface area dominates the rising temperature.  However, as we approach larger and larger x’s the Wien peak will shift to lower frequencies and at some point this will drive the increasing temperature to dominate the decreasing surface area.

This is important because the first half of this paper has been concentrating on only the last 0.1 seconds of the PBH’s life.  This model indicates that this time interval is when the PBH will be at its lowest Luminosity in this energy range.  This suggests that we should not be looking for the burst we should be looking for PBHs gamma ray sources.
III. Conclusions

A. General conclusions

The detection of -rays from PBHs would be an important discovery.  It would validate Hawking radiation as well as give us a look back into the conditions of the big bang.  This paper has proposed a model for testing the existence of PBHs in two different ways.  By detecting short gamma ray bursts on the order of 0.1 s and making a logN-logS plot, simple comparison with Figures 8-11 could confirm the existence of PBHs.  Furthermore, it could allow us to test theories of the equation of state of a quark-gluon plasma.   Unfortunately the lower limit on GLAST’s LAT is about 10-12 ergs/cm/cm/s many orders of magnitude higher than the largest fluxes I calculated and showed in Figures 8-11.  In the energy range of 100MeV-1GeV a PBH in the last 0.1 seconds of its life has a luminosity of ~1014 ergs/s.  This means that to be detectable by GLAST the exploding PBH would have to be less than 1013 cm from us.  This is a ridiculously small distance and there could not be enough exploding PBHs to create a histogram.

The second way in which one may confirm the existence of PBHs is in the daily monitoring of certain -ray sources.  If a -ray source at a given redshift is observed to follow the theoretical light curve it is a candidate to be an exploding PBH.  Unfortunately this too suffers from the same problems of above.  PBH explosions at any significant redshift are just too dim to be detected by GLAST or any other modern  ray telescope.
If someday there exists a  ray telescope with a higher energy range, closer to the Wien Peak of the radiation from evaporating PBHs, we may be able to test the existence of PBHs through this method.  I plan to investigate what PBHs would look like in a higher energy range.
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 is an exciting discovery.  This indicates that radiation in the prescribed energy range will be produced more from PBHs that are further from their burst.  This effect deserves further study, particularly finding at what x a given PBH will have its maximum Luminosity?
B.  Limitations

The limitations of this model reside mainly in the assumption that the radiation produced is always black body.  A.D. Helfer states that Hawking’s prediction “rests on two dubious assumptions: that ordinary physics may be applied to vacuum fluctuations at energy scales increasing exponentially without bound; and that quantum-gravitational effects may be neglected”10.  The second assumption lies entirely within an unestablished field; there exists no good theory of quantum gravity.  Several authors believe that QG effects could alter or completely destroy the thermal property of the radiation produced.11  However, my model can be adapted to work with any model of F(T) for an evaporating PBH.
A second limitation of this model is in the definition of 0.  In this model I take this to be a constant, however this is not exactly the case.  
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 where n(T) is the number of particles that can be radiated by the black hole.  This factor is dependent on the temperature of the hole because hotter holes can produce more particle species.  While this assumption holds for masses above 1014g, Cline et al4 suggest that around this temperature there may be an abrupt increase in the number of particles that can be radiated.  This jump in n would lead to the black hole radiating its mass faster.  Cline suggests that the jump is sufficient that a black hole will evaporate all 1014 g in 1 second.  My constant  picture suggests that the mass of an evaporating black hole with 1 second remaining will be 109 g.  This modification would lead to an increase in apparent luminosity by a factor of 105.  Thus, with 1 second left Cline et al’s model suggests that the bolometric luminosity of the evaporating PBH will be 100 solar luminosities not 1/1000th a solar luminosity.  If this is true it would make evaporating PBHs easier to detect.
The final limitation of this model is that it assumes that we can see all the way down to the Schwarzschild radius of the PBH.  Surrounding the evaporating PBH will be considerable amounts of matter that had been ejected from the PBH previously and that are moving outwards from the PBH radially.  If the number per unit volume of matter is sufficiently high we may run into optical depth effects that would alter both the effective radius and effective temperature of the emitted radiation.  I am currently working on incorporating a correction and preliminary results suggest that the Luminosity of the PBH should be a factor of 1012 larger then my models show.  This is another effect that might make PBHs easier to detect.
IV. Appendices
A. Peebles’ Solution for R(t)
Peebles claims that,
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By differentiating we can check to make sure this is true.
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B. Mathematica Code for LogN-LogS
Off[General::spell1]
gamma=-5/2 ;; This is a free parameter that is used in the IMF
tuniv=(ArcSinh[(.7/.3)^.5])/(1.5*(1/14)*(.7^.5)) ;; This is the present age of the universe
tbegin=.0003 ;; Time in Gyr of recombination
tend=tuniv
tstep=.0001

G=6.67300×(10^-8) ;; all units cgs
alpha=7.8*10^26

h=6.626068×(10^-27)

hbar=h/(2*Pi)

c=3*(10^10)

k=(1.3806503×(10^-16))

atrue=(alpha*960*G*G)/(c^4*hbar) ;; this is the constant 0 in my paper
ta=.1 ;; Time avg luminosity start value (seconds)
tb=10^-27 ;; Time avg luminosity end value (seconds)
fmin=2.42*10^22 ;; frequency range lower bound
fmax=2.42*10^23 ;; frequency range upper bound
T0=13.4975 ;; age of universe
M=((3*alpha*x)^(1/3))

T=(hbar*(c^3))/(8*Pi*G*k*M)

R=(((.3/.7)^.5)Sinh[1.5*((.7)^.5)*(1/14)*t])^(2/3)

B=(h/(k*T))

W=(128*(Pi^2)*(G^2)*(M^2)*(h))/(c^6)

faemit=fmin/R

fbemit=fmax/R

ilast=((tend-tbegin)/(tstep))+1
dp=Table[NIntegrate[(c*3.15*10^16)/R,{t,p,T0}],{p,tbegin,tend,tstep}]

dp2=Table[NIntegrate[(c*3.15*10^16)/R,{t,p,tend}],{p,tbegin+tstep,tend+tstep,tstep}]

Q=Table[(((.3/.7)^.5)Sinh[1.5*((.7)^.5)*(1/14)*t])^(2/3),{t,tbegin,tend,tstep}]

dl=dp/Q

L=Table[NIntegrate[(atrue*10*W*f^3)/((Exp[B*f]-1)),{f,faemit,fbemit},{x,tb,ta}],{t,tbegin,tend,tstep}]

F=L/(4*Pi*dl*dl)

ddp=dp-dp2

imf=Table[(((3*alpha*t*3.15*10^16)^(1/3))^(gamma)),{t,tbegin,tend,tstep}]

Num=4*Pi*dp*dp*ddp*imf

A=Table[{F[[i]],Num[[i]]},{i,1,ilast,1}]

<<Graphics`

LogLogListPlot[A,PlotStylePointSize[.005] , AxesLabel{"Flux (ergs/cm/cm/s)","Number"},PlotLabel"Relative Number vs Flux, 100MeV-1GeV, f=1/3",TextStyle{FontFamily"Times",FontSize12},ImageSize->{600, 450},PlotRangeAll] ;; This is how I plotted Figure 7
B=Sort[A]

Z=Table[

    {Part[B[[i]],1],

      Sum[Part[B[[a]],2],{a,i,ilast}]}

    ,{i,1,ilast,1}]
LogLogListPlot[Z,PlotStylePointSize[.005] , AxesLabel{"Flux (ergs/cm/cm/s)","Number"},PlotLabel"Number with Flux Greater Than vs Flux, 100MeV-1GeV, f=1/3",TextStyle{FontFamily"Times",FontSize12},ImageSize->{600, 450},PlotRangeAll] ;; By changing the free parameter gamma I plotted Figures 8-11 with this
C. Mathematica Code for Flux Curve

Off[General::spell1]
z=1 ;; This is a free parameter
istart=0.1 ;; this is the smallest time in the light curve (time in seconds)
ilast=3600 ;; this is the largest time in the light curve (time in seconds)
istep=0.1 ;; this is the increment of time (time in seconds)
istop=((ilast-istart+1)/istep)
G=6.67300×(10^-8)

alpha=7.8*10^26

h=6.626068×(10^-27)

hbar=h/(2*Pi)

c=3*(10^10)

k=(1.3806503×(10^-16))

atrue=(alpha*960*G*G)/(c^4*hbar)

fmin=2.42*10^22 ;;freq lower bound
fmax=2.42*10^23 ;; freq upper bound
tuniv=(ArcSinh[(.7/.3)^.5])/(1.5*(1/14)*(.7^.5))
M=((3*alpha*x)^(1/3))

T=(hbar*(c^3))/(8*Pi*G*k*M)

R=(((.3/.7)^.5)Sinh[1.5*((.7)^.5)*(1/14)*t])^(2/3)

B=(h/(k*T))

W=(128*(Pi^2)*(G^2)*(M^2)*(h))/(c^6)
teff=(2/3)(14)(.7^(-.5))ArcSinh[(.7/.3)^(.5)*((1+z)^(-3/2))]

R=(((.3/.7)^.5)Sinh[1.5*((.7)^.5)*(1/14)*t])^(2/3)

dp=NIntegrate[(c*3.15*10^16)/R,{t,teff,tuniv}]

Q=R=(((.3/.7)^.5)Sinh[1.5*((.7)^.5)*(1/14)*teff])^(2/3)

dl=dp/Q
L=Table[NIntegrate[(atrue*W*f^3)/((Exp[B*f]-1)),{f,fmin*(1+z),fmax*(1+z)}],{x,istart,ilast,istep}]

F=L/(4*Pi*dl*dl)

t=Table[i,{i,istart,ilast,istep}]

S=Table[{t[[i]],F[[i]]},{i,1,istop,1}]

<<graphics`

LogLogListPlot[S, TextStyle{FontFamily"Times",FontSize12},ImageSize->{600, 450},PlotRangeAll] ;; this is how I plot Figures 12-15
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