The Solow Growth Model

Version 1: No population growth, no technological progress

Consider the following production function in which Y is real GDP, K is the capital stock, and N is the labor force:

$$ Y = F(K, N). \quad (1.1) $$

Assume that the above is a constant-returns-to-scale production function. We can, therefore, write (1.1) as:

$$ \frac{Y}{N} = F(K/N, 1). \quad (1.2) $$

Let $y \equiv \frac{Y}{N}$, and $k \equiv \frac{K}{N}$. We can then re-write (1.2) as:

$$ y = f(k). \quad (1.3) $$

Assume that this is a closed economy with no government. Now, demand for goods and services in this economy can be written as:

$$ y = c + i. \quad (1.4) $$

Where c and i are consumption per worker and investment per worker, respectively. In the Solow model consumers save a fraction s of their income. Therefore, $c = (1 - s)y$. Consequently, from (1.5), (1.4) can be written as

$$ y = (1 - s)y + i. \quad (1.6) $$

Now, by a simple re-arrangement of terms in (1.6), we get:

$$ i = sy. \quad (1.7) $$

Now, assume that the depreciation rate of capital is δ. Keeping in mind that sy in (1.7) can be
written equivalently as \(sf(k) \), the change in the capital stock (per worker) can then be written as:

\[
\Delta k = sf(k) - \delta k.
\]

(1.8)

The steady-state value of \(k \), denoted by \(k^* \), is given by (1.8), when \(\Delta k \) is set to zero.

The Golden Rule level of capital

The steady-state value of \(k \) that maximizes \(c \) is called the *Golden Rule* level of capital.

Policymakers may be able to choose \(s \) such that, in steady state, \(c \) is maximized. Now, note that in steady state

\[
c^* = f(k^*) - \delta k^*.
\]

(1.9)

A necessary condition for maximum \(c^* \) is

\[
f'(k^*) - \delta = 0
\]

(1.10)

So, to find the *Golden Rule saving rate*, the following two equations, derived from (1.8) and (1.10), must be solved:

\[
sf(k^*) = \delta k \quad \text{and} \quad f'(k^*) = \delta.
\]

(1.11)

Some highlights of the Solow model:

1. At the steady state, the (per capita GDP) growth rate is zero.
2. When \(k < k^* \) positive growth takes place (and vice versa).
3. An increase in \(s \) will lead to short-term positive growth. The steady-state growth will be zero but at a higher \(y \).

- **Version 2: Positive population growth, no technological progress**

Now, let population and labor force grow at a constant rate \(g_N \). Equation (1.8) must now be rewritten as
\[\Delta k = sf(k) - (\delta + g_N)k. \]

(2.1)

The steady-state condition is

\[sf(k) - (\delta + g_N)k = 0. \]

(2.2)

And the Golden Rule saving rate can be derived by solving (2.2) and

\[\frac{dc^*}{dk} = d\left[f(k*) - (\delta + g_N)k* \right]/dk = 0 \quad \Rightarrow \quad f'(k*) = (\delta + g_N). \]

(2.3)

An additional insight in this version of the Solow model is that, all else equal, a country with a high rate of population growth will have a low steady state \(k \), and therefore a low level of \(y \).

- **Version 3: Positive population growth, positive technological progress**

Re-write the production function in (1.1) as

\[Y = F(K, A \times N). \]

(3.1)

Where \(A \) is the efficiency of labor, and the term \(A \times N \) is the labor force measured in efficiency units. Assume that technological progress causes \(A \) to grow at the rate of \(g_A \). In this model the number of efficiency units of labor is growing at the rate \(g_A + g_N \). Now, let

\[y = \frac{Y}{(A \times N)} \] stand for output per efficiency unit of labor. The production function, as before, can be written as \(y = f(k) \). Equation (1.8), previously modified to (2.1), must now be written as

\[\Delta k = sf(k) - (\delta + g_A + g_N)k. \]

(3.2)

The steady-state condition is

\[sf(k) - (\delta + g_A + g_N)k = 0. \]

(3.3)

And the Golden Rule saving rate can be obtained by solving (3.3) and

\[\frac{dc^*}{dk} = d\left[f(k*) - (\delta + g_A + g_N)k* \right]/dk = 0 \quad \Rightarrow \quad f'(k*) = (\delta + g_A + g_N). \]

(3.4)

Note that in this version of the Solow model \(y \) grows at the rate of \(g_A \) in the steady state.