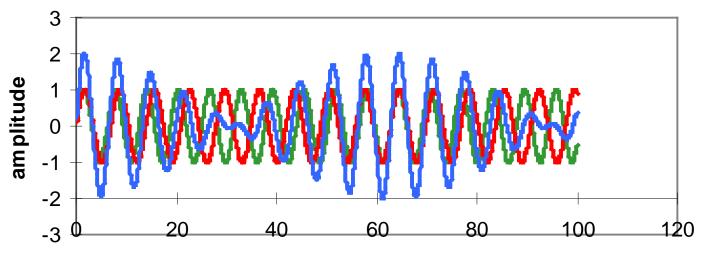
Waves – Chapter 10.2 – 10.5

- Transverse vs longitudinal
- Frequency f, wavelength λ , period T, wave speed v = λf
- Harmonic waves: y(x) = Asin(kx); with $k = 2\pi/\lambda$
- Traveling waves: $y(x, t) = Asin(kx + / \omega t);$ with $\omega = 2\pi f$
- For waves on a string $v = \sqrt{\frac{T}{m/L}}$
- •Total energy is proportional to A²

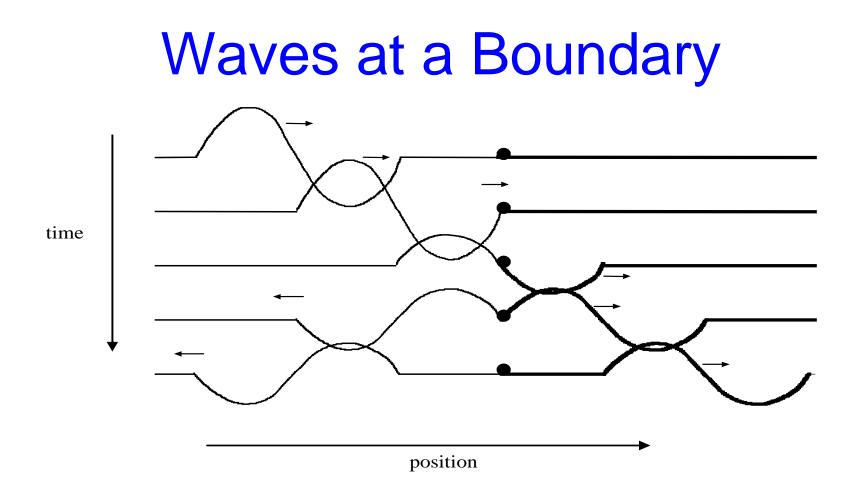
Interference

- This is a property of waves
- Waves can pass through each other "like ghosts"
- Whenever two waves overlap in space, they add together – or superpose – in a phenomenon called interference
- For harmonic waves of the same wavelength, when they are in phase they add together leading to constructive interference, and when they are out of phase by 180° – corresponding to λ/2 – then they add together leading to destructive interference

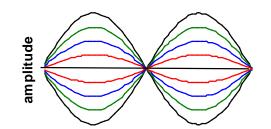
Superposition of two equal amplitude harmonic waves

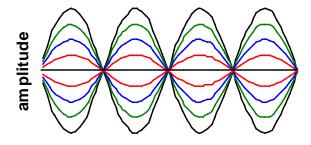

 $y_1 = A\sin(kx - \omega t)$ and $y_2 = A\sin(kx - \omega t + \varphi)$

$$y = y_1 + y_2 = A \Big(\sin(kx - \omega t) + \sin(kx - \omega t + \varphi) \Big).$$


 $\sin \alpha + \sin \beta = 2 \sin \frac{1}{2}(\alpha + \beta) \cos \frac{1}{2}(\alpha - \beta)$

$$y = \left[2A\cos\frac{1}{2}\varphi\right]\sin\left(kx - \omega t + \frac{1}{2}\varphi\right)$$




time

Standing Waves

- Superposition of equal amplitude waves traveling in opposite directions
 y₁ = A sin(kx + ωt) and y₂ = A sin(kx - ωt)
- Using the same trig identity $y = y_1 + y_2 = 2A \sin kx \cos \omega t$
- No longer a traveling wave but a standing wave

string distance

Standing waves on a string

- Only certain frequencies will allow standing waves – we require the wave to reflect and return to the starting point in phase with another oscillation.
- Lowest such resonant frequency (also known as the first harmonic) is the fundamental with $\lambda/2 = L$ so

$$f_1 = v/\lambda = v/2L$$

- Next is the second harmonic with $f_2 = v/L$ since $\lambda = L$ introduces one node
- In general $\lambda = 2L/n$ and $f_n = nv/2L = nf_1$ with n-1 nodes

Problem

• Ex. 10.3 A steel guitar string with a 10 gram mass and a total length of 1m has a length of 70 cm between the two fixed points. If the string is tuned to play an E at 330 Hz, find the tension in the string.

Standing Wave Resonance in the sand

Resonance

- Increase in energy input due to a matching of frequencies –
- other examples include NMR, ESR, resonance in springs, in pendula, in sound (we'll see this one next)