Ch 2: One-dimensional

Motion

- How do we measure the velocity of something?
- Sampling rate
- Coordinate system
- Position vs time: $\left\{\mathrm{t}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{i}}\right)\right\}$ - Table/Graph
- Displacement in time interval: Δx in Δt depends only on end points, not path
- Average velocity: $\overline{\mathrm{V}}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}$
- Example: Schenectady to NYC (150 mi) in
2.5 h
- Total distance traveled
-Average speed vs average velocity

Am I moving?

-What's my speed?

- Earth is rotating:
- $\mathrm{v}_{1} \sim 500 \mathrm{~m} / \mathrm{s}$ or $\sim 1000 \mathrm{miles} / \mathrm{h}$
- Earth orbits the sun:
- $\mathrm{v}_{2} \sim 5 \mathrm{~km} / \mathrm{s}$ or ~ 3 miles $/ \mathrm{s}$ or 11,000 miles $/ \mathrm{h}$
- Earth rotates around Milky Way Galaxy:
- $v_{3} \sim 200 \mathrm{~km} / \mathrm{s}$ or ~ 120 miles/s or 400,000 miles/h
- Milky Way Galaxy itself moving:
- $\mathrm{v}_{4} \sim 600 \mathrm{~km} / \mathrm{s}$ or ~ 360 miles $/ \mathrm{s}$ or 1,200,000 miles/h
- This is about 0.2% of $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Motion of glider

Zoom-in of motion

Instantaneous velocity

- As Δt approaches zero, Δx also does, but the ratio approaches a finite value:

$$
\mathrm{v}_{\mathrm{x}}=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

- On a graph of $x(t)$ vs $t, d x / d t$ is the slope at a point on the graph
- Larger slope \rightarrow faster
- Smaller slope \rightarrow slower
- Positive slope \rightarrow moving toward $+x$
- Negative slope \rightarrow moving toward $-x$
- "slopemeter" can be used to move along the curve and measure velocity

Slopemeter velocity vs time

More on position/velocity vs time

- If $v=$ constant, then v vs t is a horizontal line and x vs t is linear, with constant slope = v
- In this case we have that $\mathrm{v}_{\mathrm{x}}=\frac{d x}{d t}=\frac{\Delta x}{\Delta t}$ so that $x_{f}=x_{i}+v_{x} \Delta t$
- Then the area under the v vs t graph is the displacement Area $=\mathrm{v}_{\mathrm{x}} \Delta t=\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{\mathrm{i}}=\Delta x$
- If v is not constant then we need to introduce acceleration

Changes in velocity - acceleration

- Average acceleration: $\bar{a}=\frac{\Delta \mathrm{v}}{\Delta t}$
- If v vs t graph is linear, then average acceleration is a constant
- If not, then use slopemeter idea to define instantaneous acceleration:

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathrm{v}}{\Delta t}=\frac{d \mathrm{v}}{d t}
$$

- Since $\mathrm{v}_{\mathrm{x}}=\frac{d x}{d t} \quad$ we can write $\quad a=\frac{d \mathrm{v}_{\mathrm{x}}}{d t}=\frac{d^{2} x}{d t^{2}}$
- So, a is the slope of a velocity vs time graph at a point
- Examples:
o Draw possible v vs t graph for $a=$ constant >0
o Draw possible x vs t for that situation

Slopemeter to find accel. vs time

Are the velocity and acceleration greater, less than or $=0$?

Forces in Nature

1. Gravity - near the earth's surface $F=$ constant, but in general force between any two masses is:
about this now)

$$
F=\frac{G m_{1} m_{2}}{r^{2}} \quad \text { (don't worry }
$$

where G = universal gravitational constant, m's are masses, and r is separation distance
2. Electromagnetic - all other forces that we experience including all pushes, pulls, friction, contact forces, electricity, magnetism, all of chemistry

1 and 2 are long-range forces - "action at a

The Four Fundamental Interactions
 distance"

Nuclear forces:
3. Strong - holds nucleus together. Only acts within the nucleus.
4. Weak - responsible for radioactivity and the instability of larger nuclei.

How to understand action at a distance

- Two particles interact by exchanging "virtual" particles
- Each of the 4 basic forces (interactions) has its own "exchange" particle
- For electromagnetism it is the photon; for gravity, the graviton, for nuclear forces the gluon or the W and Z bosons; these travel at the speed of light and carry energy

- Fields - each type of interaction establishes a field in space with an associated property; gravity has mass; electromagnetism has electric charge

Newton's First Law

- Constant velocity doesn't require an explanation (cause), but acceleration does.
- Friction tricks our intuition here
- Newton's First Law: in inertial reference frames, objects traveling at constant velocity will maintain that velocity unless acted upon by an outside force; as a special case, objects at rest will remain at rest unless an outside force acts. Inertia is tendency to stay at rest unless an outside force acts
- inertial reference frames: examples of inertial and non-inertial reference frames

Forces I

- Contact vs field (action at a distance) forces
- How can we measure force?

Forces II

- Use springs to measure a push or pull force. Stretch of spring is proportional to force
- Can replace thé net force on an object by a single calibrated stretched spring - a big stiff one for a large force, a small flexible one for a small force.

Mass and Acceleration

- Inertial mass m
- We can find the relative masses of two objects by exerting the same force on them (check with our springs) and measuring their accelerations:

$$
\frac{m_{2}}{m_{1}} \equiv \frac{a_{1}}{a_{2}}
$$

- This, with a 1 kg standard, defines inertial mass (different from weight, a force - later)

Newton's Second Law

- in an inertial frame of reference, the acceleration of a body of mass m, undergoing rigid translation, is given by

$$
\vec{a}=\frac{\vec{F}_{\mathrm{net} \mathrm{on} \mathrm{~m}}}{m}
$$

where $F_{\text {net }}$ is the net external force acting on the body (that is, the sum of all forces due to all bodies other than the mass m that push and pull on m).

- This is more usually written as $\mathrm{F}=\mathrm{ma}$
- Units for mass (kilograms kg), force (newtons N)
- Note that if $F_{\text {net }}=0$, then $a=0$ and $\mathrm{v}=$ constant, giving Newton's First Law

Weight

- Weight is the force of gravity acting on a mass $F_{g}=m g$ where $g=G M_{e} / R_{e}{ }^{2}$ (with numerical value $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)- Note: the mass does not have to be accelerating to have weight !!
- Gravitational mass = inertial mass
- Mass and weight are different: on the moon you would have your same mass, but a weight that is much less, about 1/6 that on earth, due to the weaker pull of the moon
- Also, you weigh a bit less on a tall mountain since the earth pulls on you with a weaker force - this is responsible for the lower boiling point of water at high altitudes

Newton's Third Law

- An acceleration requires an external force - what is that for a runner or bicyclist or flying bird or swimming fish?
- What you push against is very important - forces are interactions between objects
- When one body exerts a force on a second body, the second exerts a force in the opposite direction and of equal magnitude on the first; that is,

$$
\vec{F}_{2 \text { on } 1}=-\vec{F}_{1 \text { on } 2}
$$

- These are sometimes called action-reaction pairs

Third Law Examples

- Identify the interaction pairs of forces. In each case draw a free-body diagram:
- A book resting on a table
- A book resting on a table with a second book on top of it
- A cart being pulled by a horse along a level road
- A heavy picture being pushed horizontally against the wall

Diffusion

-Why is diffusion important??

- Examples of diffusion = Brownian motion = thermal motion
- Random walk in one dimension
- Mean square displacement definition in 1 dim

$$
<\Delta x^{2}>=2 D t
$$

- In 2 or 3 dim: $2 \mathrm{Dt} \rightarrow 4 \mathrm{Dt} \rightarrow 6 \mathrm{Dt}$

Diffusion Problem

- Example 2.9 The diffusion coefficient for sucrose in blood at $37^{\circ} \mathrm{C}$ is 9.6×10^{-11} $\mathrm{m}^{2} / \mathrm{s}$. a) Find the average (root mean square) distance that a typical sucrose molecule moves (in three-dimensions) in one hour. b) Now find how long it takes for a typical sucrose molecule to diffuse from the center to the outer edge of a blood capillary of diameter $8 \mu \mathrm{~m}$.

