
Chapter 3 

• Applications of Newton’s Laws in 1 
dimension 
– Free Fall 
– Motion in a Fluid 
– Spring motion 
– Molecular Dynamics 



Free fall 

• Acceleration = g = 9.8 m/s2 = constant 
• Constant acceleration implies constant force 

= weight 
• Be careful when there is air friction – then 

acceleration is not constant and a terminal 
velocity results 



Constant acceleration Kinematics 

• If acceleration is constant then the average acceleration 
= constant (instantaneous acceleration) 

• Then    and  
 

• Also   → same result  
• Also, from the vx vs t graph, 
 the area under the line  
 gives the displacement so 
  

 
• We can get this result by integrating again also: 
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• Eliminating ∆t from the first two boxed 
equations we get one more:  
 

2 2v v 2f o a x= + ∆

Example problems  



Motion in a Viscous Fluid 
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We’ll discuss the buoyant force 
later 

For now we focus on the 
friction force 

The Reynolds number governs what happens:  

where L is the characteristic size of the object, ρ its density and η its 
viscosity. 

For large Reynolds numbers, the flow is turbulent and the frictional 
force can often be written as (    >> 1)  

 

where C ~ 1 

Notion of effective area – reduce to minimize friction resistance 
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Terminal velocity 

• Returning to our falling object: 
 

• Soon after release, the object will have 
zero acceleration and a terminal velocity 
given by inserting the friction force and 
setting a = 0:  
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Small Reynolds number 

• The other limit is when the Reynolds 
number is very small – laminar flow – can 
occur for very small objects or larger 
viscosities 

• The frictional force is linear in v and given 
by  
 

• Bacterial motion is governed by this force
    

v =6 r for a spherefF f f πη=



Another one-dimensional motion 
problem - springs 

,F kx= − Hooke’s Law 
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Spring Problem 
 P28 in text: Attached to a spring on a frictionless table top, 

a 1 kg mass is observed to undergo simple harmonic 
motion with a period of 2.5 s after stretching the spring.  
The spring is then held vertically and a 0.2 kg mass is 
attached. 

• Find the distance the spring is stretched. 
• If the spring is then stretched an additional 5 cm and 

released, find the period of the subsequent motion. 
• What is the maximum acceleration of the 0.2 kg mass? 
• What is its maximum velocity? 
 



Elasticity of Solids 
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Shear /Pressure 
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Strength of Biomaterials 

Collagen fibers – triple helix 

 

Themes:  filament subunits → composites 

filaments → fibers → fiber bundle → muscle 

 

myosin (thick) filaments actin (thin) filaments 

cross bridges 

sarcomere 

Striated muscle -  



Fluids/Gels 

 

Fluid/Gel systems behave differently 
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Molecular Dynamics 

   How do all the atoms of this hemoglobin 
molecule move around in time? 

They undergo random thermal motions, 
known as diffusion, and each atom 
responds to all the forces acting on it 
according to Newton’s laws.  The 
problem is that there are many atoms in 
hemoglobin and many solvent 
molecules that collide with them and 
need to be accounted for. 

Early crystal x-ray diffraction structures were pictured to be static – 
but really the atoms move about quite a bit 



Mol. Dynamics 2 
• In one dimension the acceleration of the ith 

atom is given by:  ,i i ij net on i
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From this we know that for a small time step (typically less than 1 ps = 
10-12 s) 

and 

Adding these 

So if we know the forces and starting positions, we can iterate and 
predict the motion of each atom 

While subtracting them gives .
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Mol. Dynamics 3 
• Molecular dynamics calculations are computer 

intensive – for each time step (sub – ps) you 
need to do several calculations for each atom in 
the molecule. 

• For a reasonable protein (several 100 amino 
acids – or thousands of atoms) it takes many 
hours of supercomputing to map out the motions 
for nanoseconds 

• Fast laser dynamic experiments are just starting 
to actually measure time courses of individual 
molecule motion in picoseconds 

• Look at this web site for movies: 
 http://www.ks.uiuc.edu/Gallery/Movies/ 
 

http://www.ks.uiuc.edu/Gallery/Movies/

	Chapter 3
	Free fall
	Constant acceleration Kinematics
	Slide Number 4
	Motion in a Viscous Fluid
	Terminal velocity
	Small Reynolds number
	Another one-dimensional motion problem - springs
	Slide Number 9
	Slide Number 10
	Spring Problem
	Elasticity of Solids
	Shear /Pressure
	Strength of Biomaterials
	Fluids/Gels
	Molecular Dynamics
	Mol. Dynamics 2
	Mol. Dynamics 3

