General Description of Motion

We’'ve seen that the translational motion of a
complicated object can be accounted for by the motion
of the center of mass

Now, we turn to all the other motions with respect to
coordinate system moving with the center of mass

These are of two types: coherent and incoherent with
coherent motions being rotations and vibrations that
occur in a coordinated way, while incoherent motions are
random thermal vibrations connected with the object’s
Internal energy or temperature

If the object is rigid, then the overall motion consists of
translation and rotation about the center of mass

Because of this nice separation, we start our discussion
of rotational motion by looking at a rigid object that
rotates about a fixed axis of rotation



Rotation about a Fixed Axis

e Let’s start with an object that is rotating
about a fixed axis of rotation. How can

we best describe it's motion? ™\
« Rather than using {x,y,z}, it should /
make sense to use cylindrical ST
coordinates {r,0,z} or in 2-D just {r,0},
since every point (P) in the object just

travels around in a circle of radius r.

« So really, this is a problem with only

one variable, the angle 6.

* Using the relation s = r6 for the arc

length that P moves through to define the

angle (in radians) g _ >

r




Angular velocity

e Let’s define the average angular speed of the
object as _6,-6  A@
T Tt At
 Then we can define the instantaneous angular
velocity in the usual way:

A6 dO - In units of rad/s
M0 AL dt - can be + or —

* Note that there Is a connection with the linear
tangential speed given by the first derivative of
the equation s =r@ so thatv =rw - butthat the
better velocity is w since it is the same for the
entire object

o =lim




Angular acceleration

Similarly, we introduce the average angular acceleration:

a = —
t, —t. At
And the instantaneous angular acceleration:
o =lim, A2 _do
- units are rad/s? ASDAL it

Again, the connection with linear variables comes from
the second derivative of s = r@ so that a, = ra,, where this
linear acceleration is tangential - but that again the better
variable to use is the angular acceleration, since it is a
constant for the whole object

Note that for this circular motion there is also a
centripetal (or radial) acceleration given by a,=v4/r = wr,
so that the net accelerationis 3= a, +a



Equations of Rotational Motion

« Using our definitions we can get equations

of motion: (assumlngoc constant)

a:da) jda) Iadt_,a) =, +at

 And 0 = Cilg jd& jwdt—jw+at)dt or
0

9=<9i+a)it+5at

 And eliminating t:
0’ =’ +2a((9f —Qi)




Examples

LIS RN A Comparison of Equations for
Rotational and Translational

Motion: Kinematic Equations

Rotational Motion About a Translational Motion
Fixed Axis with & = Constant with a = Constant
(Variables: 6yand wy) (Variables: xrand vy)
W= w; + at vp = Yv; T al
0r= 0, + wit + %azg xp= x; + vt + %atg
0= 0, + é(wi + wf)t Xp= x; + é—(vi + vp)t
wf2 = w? + 2a(0,— 0, 1{[2 = y? + 2a(xr— x;)

Example 7.1 A stationary exercise bicycle wheel starts from rest and
accelerates at a rate of 2 rad/s? for 5 s, after which the speed is
maintained for 60 s. Find the angular speed during the 60 s interval and
the total number of revolutions the wheel turns in the first 65 s.



Rotational Kinetic Energy

 What's the KE for a particle traveling in a circle or radius
r at constant speed?

KE, = Y2 mv2 = Y2 m(rm)? = ¥2 (Mr?)w? = %2 lo?,
where | = mr2 and o = constant angular v

e |is called the moment of inertia and has units of kg-m? —
It's a measure of the resistance to change in rotational
speed and depends not only on the mass, but how it is
distributed about the rotation axis

* With many particles we can repeat this derivation
Inserting a sum X to find that

KE,, = %2 (Emi?) *> =% low? or with a continuous object:
| =lim,__ Zr°Am, =jr2dm =Ipr2dv

Am—0




Moments

of Inertia

LS R 3 | Moments of Inertia of Homogeneous Rigid Bodies with

Different Geometries

Hoop or thin

cylindrical shell ‘t l___ #
Ton = MR? = | n
Wy _-___"’
Solid cylinder ge| ‘#;
or disk i
Ioy =1 MR B
Long thin rod - | -l
with rotation axis j o
e
through center :,/j
1 4% =
Ton = g ML* L—1 L

Solid sphere Qd | d;
Ton = £ MR?
5
T

R

Hollow cylinder -
1 o o s
e =5 MR+ RyY) iy,

SN R R,

e
[

Rectangular plate

T s iIE M(a® 1 b2

Long thin
rod with -
rotation axis ]

through end

| G
1 2 =
1=+ ML =
Thin spherical | -
shell i
9 0 =3
fom == MR*

o

All are of the form | =
kmd2where d is the
appropriate spatial
dimension and k Is
some numerical
coefficient




Example

« Example 7.4 Calculate the moment of
Inertia of the gadget shown. The small
masses are attached by a light rigid rod
and pivot about the left end of the rod.

Jseavalueofm=15kgandd=0.2 m.

 If the assembly were to pivot about its mid-
point, find the moment of inertia about this

axis as well.
2d d 2d

- >< < >

———
m 2m 3m




Conservation of Energy

 When all the forces acting on a system of
rigid bodies are conservative so that the
work done by those forces can be
expressed as a potential energy
difference, we can write the conservation
of energy equation for the system,
composed of translating, rotating, or rolling
symmetric rigid bodies, as

imv® +1lw *+ PE = E = constant.



Example Problem

« Example 7.6 An empty
bucket of 1 kg mass,
attached by a light cord
over the pulley for a water
well, Is released from rest
at the top of the well. If
the pulley assembly is a
15 cm uniform cylinder of
10 kg mass free to rotate
without any friction, find
the speed of the bucket as
It hits the water 12 m
below.




Torque

« How can we produce a
rotation of a rigid object?
Need a force, but it must

be “well-placed” as well ¥
« Torque, t = rFsin ~— /1
) ¢ S 0
ort=riF=rFL (INnN-m); ¢ %?J/ = Fcos
rL=moment arm A e

 Torque is the rotational
analog of force — it
depends on F but also on
where the force Is applied



Rotational Work and Energy

e Starting from the work-energy theorem
W, .. = AKE, If the object can only rotate about a
fixed axis we have, In a time interval At,

AW =AKE,, = Allw’

net,external 2

So that
AW =il(w+Aw)’ Ll

net,external ~— 2

Taking the difference and only keeping terms in

Aw, we get AW = loAw
or

net,external

— Ia)A—wAt =(la)Al

net,external
At

AW



Rotational Work and Energy Il

* Now, from the general definition
OFWOTK AW, o = (Frugn ), AX b

net,ext ~— net,ext

 But for a particle traveling in a
circle, the displacement is

AX=S=rA0f

so that
AW

net.ext — (

= A

net,ext

)L rAO =71

net,ext

* Looking back we see that — |l

net,ext

In analogy with F ¢ ¢ = Mma



Quick Review

We introduced the rotational variables: 0,
o, oo and found analogous equations

relating them to those from |

Inear variables

We next introduced the moment of inertia

of a particle | = mr2and its g
and found the rotational KE,

We then introduced the ana
namely the torque t = rFsing

eneralizations
ot = V2 loy?

og of F,

D=1 | F = FFJ_

We saw that t = la, the ana

ogtoF=ma

Also Work = 1t A0 In analogy with Fx



Example Problems

« Atwood machine with real pulley —
Find the acceleration of the masses

 Race between a hoop and cylinder
of the same mass and radius down

an inclined plane from a height H
without slipping — which one wins?




Bio-example: F1-ATPase

 lower the ATP concentration - individual step rotations of 120° of the shaft
were observed.

* torque measured for each step rotation was 44 pN-nm,

« calculated the work done by this rotary motor in each step rotation: a step
rotation angle of A = 120° = (2n/3)

o they found that AW = (2r/3)(44 pN-nm) = 92 pN-nm = 92 x 1021 J.

 This value is very close to the energy liberated by one ATP molecule when
it is hydrolyzed to ADP.

» smallest of all rotary motors is nearly 100% efficient in converting energy
into rotational work



Rotational analogs

« Remember that we were able to re-write
Newton’s second law F = ma In terms of
the momentum as F = dp/dt. Here, F Is
the net external force on the system and p
IS the total momentum of the system. This
was particularly useful when F g, o; = 0, SO
that momentum was conserved.

 Now that we have a rotational form of the
equation t = la,, what is the corresponding
“momentum” equation? And does it lead to
a new conservation law?



Angular Momentum for a particle

e By analogy, you might guess correctly that angular
momentum L is given by L = lw.

 For a particle | = mr?, so that we have L = mrémp =
rm(ro) =r(mv) =rp

* We can write that T = dL/dt, the analog to F = dp/dt

*This can also be written as t = dL/dt = Idw/dt = la



L for a system

* For a system, the generalization Is

Tnet, extemal — dLora/dt . With the internal
torques canceling pair-wise, just as the
internal forces do. Here, L, = > L;

 For arigid body rotating about a fixed axis,
all points move In circles and r and v are
perpendicular to each other, so

| Lot | = Smviri= ¥mi(or)r = Y(mrd)o,

= Itotal Q
 This is the rotational analog of p = mv



Conservation of Angular
Momentum

* Since Tn_et, _external = dL/dt’ If Tnet, external — O or the
system is isolated, then L = constant, and we
have a hew conservation law.

 Examples:
— Isolated platform
— lce skater — no friction
_ Diving off diving board |
— Neutron stars

v]ewim?s

73




Problems

Ball of mass m on a frictionless table. e e —
Initially set in circular motion at radius R -~
and speed v.. Then we pull the string in so e &
the radius shrinks to r. What is the final
speed of the ball and is KE conserved?

Merry-go-round problem (Ex. 7.14):

A5 m radius merry-go-round with
frictionless bearings and a moment of
inertia of 2500 kg-m? is turning at 2 rpm :
when the motor is turned off. If there were SRS
10 children of 30 kg average mass initially &
out at the edge of the carousel and they
all move into the center and huddle 1 m
from the axis of rotation find the angular
speed of the carousel.




Summary

LAY -1 SR R | A Comparison of Equations for

Rotational and Translational Motion:
Dynamic Equations®

Rotational Motion Translational

About a Fixed Axis Motion

Kinetic energy Ky = %Iw2 K = %va

Equilibrium -0 SE-

Newton’s second law 2 T la 2 E - ma
. dL dp
Newton’s second law 27 - EF = e
dt dt
Momentum L= lw p = mv
Conservation principle L, L P: = Py
Power P =10 P = Fu

4 Equations in translation motion expressed in terms of vectors have rota-
tional analogs in terms of vectors. Because the full vector treatment of ro-
tation is beyond the scope of this book, however, some rotational equa-
tions are given in nonvector form.




Segmented
Fhotodiode

\

Atomic Force Microscope

Cantilevet
with Tip

__,.-5:-”-'5"
SCOMe

How is a macroscopic tip able to measure the
surface height with sub-atomic resolution?

Effective spring constant for the cantilever is much
smaller than the effective spring constant that holds
the surface atoms together and the tip applies a
very small (107 to 1011 N) force on the surface
Cantilevers used in AFM are usually microfabricated
silicon made with integrated tips or with glued
diamond tips with effective spring constants of 0.1 -
1.0 N/m.



Rotational Diffusion and

Membranes N

7. =—fo. f.=8znr,

Rotating molecule feels frictional torque
from surrounding viscous fluid Fluid mosaic model of membrane

(©)
./.

Vo o
® o
Cartoon of a macromolecule
undergoing rotational diffusion
due to random collisions with KT
B

solvent molecules D, =

Vegetable model of
fo membrane

Rotational diffusion coefficient



Static Equilibrium

* [ =constant; | = constant at equilibrium

 special cases when the object Is at rest
- -0

X,net —
Tnet

e Problems:

1. (P7.33)A housepainter who weighs 750 N
stands 0.6 m from one end of a 2.0 m long
plank that is supported at each end by ladder
anchors. If the plank weighs 100 N, what force
IS exerted upon each anchor? Va

0.6m




Problem 2

e Suppose that a 50 N uniform crate at rest is
pushed with a horizontal force of 30 N applied at
the top of the crate with dimensions as shown
below. If the coefficient of static friction is 0.7, will
the crate slide along the surface or pivot at point
O? If it will pivot, find the minimum applied force
that will make the crate pivot about O.

~1Im
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