Ohm's Law: V = IR
Power dissipated (Joule heating) =

$$
P=I^{2} R=I V
$$

Kirchoff's Loop equation: $\sum_{\text {closed loop }} V_{i}=0$

Kirchoff's junction rule: $\sum_{\text {entering /leaving junction }} I_{i}=0$

Resistors in series: $R_{\text {eq }}=R_{1}+R_{2}+\ldots$
Resistors in parallel: $\mathrm{R}_{\mathrm{eq}}{ }^{-1}=\mathrm{R}_{1}{ }^{-1}+\mathrm{R}_{2}{ }^{-1}+\ldots$
Capacitors in series: $\mathrm{Ceq}_{\mathrm{eq}}{ }^{-1}=\mathrm{C}_{1}{ }^{-1}+\mathrm{C}_{2}{ }^{-1}+\ldots$
Capacitors in parallel: $\mathrm{C}_{\text {eq }}=\mathrm{C}_{1}+\mathrm{C}_{2}+\ldots$

Group Problems

1. R combo - all 100Ω
a) Find I from the battery
b) Find I through each R
2. a) Find equivalent R (in terms of R)
b) Find the battery current if $R=100 \Omega$

Simple RC Series circuit

- Discharging: $\mathrm{Q}(\mathrm{t})=\mathrm{Q}_{0} \exp (-\mathrm{t} / \mathrm{RC})$
and $\quad I(t)=I_{0} \exp (-t / R C)$

When $\mathrm{t}=\mathrm{RC}=1$ time constant, then
$\mathrm{Q}=\mathrm{Q}_{0} \exp (-1)=0.37 \mathrm{Q}_{\text {。 }}$

Microscopic Picture of Electric Current

- E field in wire produces forces on free electrons leading to a net drift velocity: $v_{\text {drift }}=a \tau$, where a is the acceleration $(a=F / m=e E / m=e(V / L) / m$ where V is the applied voltage across the wire of length L) and τ is the meanfree time between collisions
- Solving for the charge drifting by allows us to compute the current $\mathrm{I}: \mathrm{I}=\left[\left(\mathrm{ne}{ }^{2} \tau / \mathrm{m}\right)(\mathrm{A} / \mathrm{L})\right] \mathrm{V}=$ $[1 / R] V=G V$, where n is the free charge density, e is the electron charge, A is the wire cross-sectional area, R is the wire's resistance and G is its conductance
- We can also introduce intrinsic parameters: conductivity, $\sigma=n e^{2} \tau / m$ and resistivity, $\rho=1 / \sigma$ to write $\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$

retinal "starburst" cell (red) found in visual processing network, Courtesy of Thomas Euler, Max Planck Institute for Medical Research, Heidelberg

Inside

Outside

