Diatomic Molecules

- Forces holding molecules together are complex combination of attractive and repulsive Coulomb forces – but not simple 1/ r potentials – Lennard-Jones has n = 12, m = 6
- Rem: $F_r = -dV/dr$

Types of Molecular Bonds

- Ionic bond between charged ions (Coulomb attraction) – e.g. Na (1s²2s²2p⁶3s¹) ionizes and donates e⁻ to fill CI (1s²2s²2p⁵)
- Covalent bond sharing of electrons larger density of e⁻ between two atoms and e⁻ are coupled with opposite spins– e.g. H₂, N₂, O₂
- van der Waals relatively weak bond uses dipole-dipole attraction as well as dispersion force
- H- bond very weak attractive bond particularly important in biology

Rotational Energy States

Rotational energy states

© 2006 Brooks/Cole - Thomson

Vibrational Energy States

- Bonds act like springs so there is vibration
- Classically $f = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$

while from QM

$$E_{vib} = (n + \frac{1}{2})\hbar\omega$$

Table 10.1Fundamental Vibrational Frequencies
and Effective Force Constants
for Some Diatomic Molecules

Frequency (Hz), n = 0 to $n = 1$	Force Constant (N/m)
$8.72 imes10^{13}$	970
$8.66 imes 10^{13}$	480
$7.68 imes10^{13}$	410
$6.69 imes10^{13}$	320
$6.42 imes10^{13}$	1860
$5.63 imes10^{13}$	1530
	Frequency (Hz), n = 0 to n = 1 8.72×10^{13} 8.66×10^{13} 7.68×10^{13} 6.69×10^{13} 6.42×10^{13} 5.63×10^{13}

Spectra from diatomic molecules

• Combined rot and vib spectra:

$$E = E_{rot} + E_{vib} = \frac{\hbar^2 \ell (\ell + 1)}{2I} + (n + \frac{1}{2})\hbar\omega$$

Photon emitted energies:

Selection rule is $\Delta \ell = \pm 1$

 $E_{ph,\Delta n,\ell+1\to\ell} = \Delta n(\hbar\omega) + \frac{\hbar^2}{2I} \left[(\ell+1)(\ell+2) - \ell(\ell+1) \right]$ $\ell = 3$ $=\Delta n(\hbar\omega) + \frac{\hbar^2}{I}(\ell+1)$ Absorption spectrum for HCI Intensity 8.20 8.00 8.40 8.60 8.80 9.209.00Frequency (10^{13} Hz) $\Delta \ell = \pm 1$

Lasers -1

 Light Amplification by the Stimulated Emission of Radiation

Need population inversion

Lasers - 2

excitation

Lasers - 3

Resonant cavity – making a beam

He-Ne energy levels

Laser Tweezers

