
Atomic Models – the Nucleus
Rutherford (read his bio on pp 134-5), who had already won a Nobel for his 
work on radioactivity – had also named alpha, beta, gamma radiation, 
developed a scattering technique to study the atom.

He, together with Marsden & Geiger, directed energetic alpha particles onto thin 
gold-leaf targets and studied their scattering.  In 1911 he reported that the 
results were not consistent with Thomson’s plum-pudding model in which the 
electrons were embedded in a uniform positive charge background sphere – like 
raisins in a plum pudding.

What they found was that 
as the impact parameter b 
got smaller there were 
large deviations, including 
backscattered alpha’s –
further they analyzed the 
results in terms of simple 
Coulomb scattering from a 
tiny central positive 
nucleus and found 
agreement with their data



Rutherford scattering
• Rutherford made 4 assumptions in 

trying to understand their data:
– The gold atom is so massive that it does not 

recoil – so the alpha does not loose KE
– No multiple scattering exists (the target is 

thin)
– Can treat everything as point particles
– Only the Coulomb force is effective

• Derivation of Rutherford scattering 
equation
– Start with expression for Δp for alpha (see 

diagram on right)
Δp = 2mvosinθ/2

– Using Newton’s second law Δp = FΔpΔt, 
where we take the component of the 
Coulomb force along the net change in 
momentum direction



Rutherford scattering (2)
Using the diagram below, with z’ along the Δp direction, we have

But conservation of angular momentum gives L = mvob = (mr2)dφ/dt, so that            
1/r2 = (1/vob)dφ/dt  so our integral becomes:
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Rutherford (3)
The integral ranges from φ = -(π−θ)/2 to +(π−θ)/2, so

and we have, solving for b:

• Now, we introduce the scattering cross-section, σ,  σ = πb2, as the cross-sectional 
area of interaction for scattering through angle θ or larger

• With a thin foil target with n atoms/volume and thickness t, the fraction of incident 
particles scattered by the target, f, is the number of target atoms per unit area (nt) 
multiplied by the scattering cross section or

• One last complication is that the detector spans an angular range of Δθ so by 
differentiating the previous expression we find     

( )

( )/2

/2
cos sin 2cos( / 2)d

π θ

π θ
φ φ φ θ

−

− −
= =∫

2 2
1 2 1 2

2 cot cot
4 2 8 2o o o

Z Z e Z Z eb
mv K

θ θ
πε πε

= =

22
2 21 2 cot

8 2o

Z Z ef nt nt b nt
K

θσ π π
πε

⎛ ⎞
= = = ⎜ ⎟

⎝ ⎠

22
21 2 cot csc

8 2 2o

Z Z edf nt d
K

θ θπ θ
πε

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠



Rutherford (4)
• Finally, if the number of incident particles is Ni, then the number scattered 

per unit area into the detector spanning a ring of annular width dθ is       
N(θ) = Ni׀df dA, where dA, from the figure below is given by/׀

• Putting in df and dA, we find the final result for N(θ)
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1. Z2 dependence

2. K-2 dependence

3. sin4(θ/2)

4. t dependence

All these were verified



Problems
• Problems 7 and 10 in chapter



Bohr Model of Atom
• Bohr’s assumptions

– Stationary states – definite E
– Transitions between these give absorption or 

emission of photons:  ΔE = hf
– Classical physics governs stationary states 

but not transitions between them
– Angular momentum of atom is quantized to be 

a multiple of h/2π = 

• Derivation of energy levels: En = -Eo/n2

• Transitions between these gives spectrum



Bohr Model (2)
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Actually, the electron and proton revolve around their 
common center of mass – in mechanics, this 2-body 
problem can be reduced to a 1-body problem where the 
electron mass is replaced by the reduced mass μ, 
where so that R = (μ/m)R∞0.999456
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Problem
• Problems 22 and 34
Solutions
22. We’ve seen that L = mvr = nħ results in         v = 

nħ/mr but also r = n2ao so that 
v = ħ/nmao or v/c = ħ/nmcao = α/n, where     α = 
1/137
So for n = 1, 2, 3, we have v/c = 0.0073, 0.0036, 
and 0.0024.

34. Since rn = n2ao, we have:
(a) r2 – r1 = 3ao;  (b) r5 – r2 = 21ao; (c) r6 – r5 = 11ao; 
(d) r11 – r10 = 21ao     
(note rm – rn = (m+n)ao for m-n = 1)



Correspondence Principle
• In the limits where classical and quantum 

physics must agree, the quantum theory 
must reduce to classical results

• For example, in the Bohr model for large 
n, where the energy level spacing is very 
small (almost continuous), for a transition 
from n+1 to n we should get the classical 
result for the frequency of emitted light.  
(Show this in class)



Limitations of Bohr Model
1. Why is L quantized?
2. Why are the “stationary orbits” stable?
3. How long do atoms stay in excited states?
4. What about atoms with 2 or more electrons?
5. Could not predict intensities of lines or the fine structure 

seen in the presence of fields.
6. Could not explain the binding of atoms to form molecules.

Bohr theory has an ad hoc nature that leaves lots of open 
questions

It can be generalized to other single-electron (hydrogen-like) 
atoms that have been ionized (see text)



Characteristic X-rays
• Characteristic x-rays arise from electron 

transitions from an upper energy level (outer 
shell) to a lower one (inner shell) that is vacated 
by a collision with a high energy electron

For K-shell vacancy, 
there still remains 1 
K shell electron (two 
e- are allowed in K 
shell) so, Moseley 
found that

so that a plot of Z vs
f1/2 should be linear

Showed that Z (not 
A) was the important 
factor in the Periodic 
Table
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Franck Hertz Experiment
Experiment:  (to be done in lab)  accelerated electrons pass through Hg gas.  As 
the energy of the electrons increases (according to increase in V), collisions can 
lead to excitation of Hg atoms (requires 4.88 eV for transition from ground to first 
excited state).  At higher energies, each accelerated electron can make multiple 
collisions with different Hg atoms leading to the current vs V graph shown below.
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