Schrödinger Wave Equation

- Time-dependent SE

$$
i \hbar \frac{\partial \Psi(x, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi(x, t)}{\partial x^{2}}+V \Psi(x, t)
$$

- Properties of solutions
- Linear: if Ψ_{1} and Ψ_{2} are solutions, so is $\Psi=\mathrm{a} \Psi_{1}+\mathrm{b} \Psi_{2}$, where a and b are constants
- A very useful solution is $\Psi(x, t)=$ Aexp[i(kx- $\omega t)]$
$-\mathrm{P}(\mathrm{x}, \mathrm{t}) \mathrm{dx}=\Psi^{*}(\mathrm{x}, \mathrm{t})_{\infty} \Psi(\mathrm{x}, \mathrm{t}) \mathrm{dx}$
- Normalization: $\int_{-\infty}^{\infty} P(x, t) d x=\int_{-\infty}^{\infty} \Psi^{*}(x, t) \Psi(x, t) d x=1$
- Boundary conditions:
- Ψ must be finite and single valued
- Ψ and its derivatives must be continuous and
- Ψ must approach 0 as x goes to infinity

Time-independent SE

- Separation of variables leads to the timeindependent SE: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial x^{2}}+V \psi(x)=E \psi(x)$
- So that $\Psi(x, t)=\psi(x) e^{-i \omega t}$
- Stationary States: $\mathrm{P}(\mathrm{x})$ independent of time ; $P(x)=\psi^{*}(x) \psi(x)=|\psi|^{2}$

3D SE

- Generalizing the time-dependent SE to 3D, we have
$i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}\right)+V \Psi=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi$
- The time-independent SE becomes

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi
$$

- We will return to this later for the hydrogen atom

Average Values = Expectation Values

- For discrete set:

$$
\bar{x}=\frac{\sum_{i} N_{i} x_{i}}{\sum_{i} N_{i}}
$$

$$
\int^{\infty} x P(x) d x
$$

- For continuous variable:

$$
\bar{x}=\frac{-\infty}{\int_{-\infty}^{\infty} P(x) d x}
$$

- In QM:

$$
\langle x\rangle=\frac{\int_{-\infty}^{\infty} x \psi^{*}(x) \psi(x) d x}{\int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x}=\int_{-\infty}^{\infty} x \psi^{*}(x) \psi(x) d x
$$

- For any $\mathrm{g}(\mathrm{x})$:

$$
\langle g(x)\rangle=\int_{-\infty}^{\infty} g(x) \psi^{*}(x) \psi(x) d x
$$

Operators - momentum \& energy

- Motivation for attributing $\hat{p}=-i \hbar \frac{\partial}{\partial x}$ and $\quad \hat{E}=i \hbar \frac{\partial}{\partial t}$
- Operator expectation values:
- So,

$$
\langle A\rangle=\int_{-\infty}^{\infty} \Psi^{*}(x, t) \hat{A} \Psi(x, t) d x
$$

$$
\begin{aligned}
& \langle p\rangle=-i \hbar \int_{-\infty}^{\infty} \Psi^{*}(x, t) \frac{\partial \Psi(x, t)}{\partial x} d x \text { and } \\
& \langle E\rangle=i \hbar \int_{-\infty}^{\infty} \Psi^{*}(x, t) \frac{\partial \Psi(x, t)}{\partial t} d x
\end{aligned}
$$

- Examples

Infinite Square-Well Potential

- Schrödinger equation within well - find solutions and match to boundary conditions:

$$
\psi_{n}(x)=A \sin \left(\frac{n \pi x}{L}\right)
$$

- Normalize wave functions to find A :

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

- Find possible energies:

$$
E_{n}=n^{2} \frac{\pi^{2} \hbar^{2}}{2 m L^{2}}=n^{2} E_{1}
$$

Finite Square Well

- Divide up space into 3 regions and solve SE in each
- Use matching Ψ and $\partial \Psi / \partial x$ at boundaries to solve for coefficients
- Tunneling/penetration depth ideas tied in with uncertainty principle

Simple Harmonic Oscillator in 1D

- Hooke's Law gives a quadratic potential energy
- Very important problem, since every V that has a minimum can be approximated by a quadratic V near the minimum

Qualitative SE solutions to SHO

- SE for SHO $\frac{d^{2} \psi}{d x^{2}}=-\frac{2 m}{\hbar^{2}}\left(E-\frac{\kappa x^{2}}{2}\right) \psi$
$\alpha^{2}=\frac{m \kappa}{\hbar^{2}} \quad$ and $\quad \beta=\frac{2 m E}{\hbar^{2}}$ we have $\frac{d^{2} \psi}{d x^{2}}=\left(\alpha^{2} x^{2}-\beta\right) \psi$
- Minimum energy E_{o} cannot $=0-\mathrm{a}$ calculation based on the uncertainty principle shows that $E_{o}=\frac{\hbar}{2} \sqrt{\frac{\kappa}{m}}=\frac{\hbar \omega}{2}$
- Solutions are $\psi_{n}=H_{n}(x) e^{-\alpha x^{2} / 2}$
with $E_{n}=\left(n+\frac{1}{2}\right) \hbar \sqrt{\kappa / m}=\left(n+\frac{1}{2}\right) \hbar \omega$

Barriers and Tunneling

Classically, when a particle of energy E meets a barrier of height V_{0}, if $E>V_{0}$ the particle would pass right by, reducing its v when in the region of V_{0} (since $K=E-V_{0}=1 / 2 \mathrm{mv}^{2}$). If the particle has energy less than V_{0} it will always be reflected from the barrier wall because it cannot enter the barrier.

In QM, things will be different because the particle has wave-like properties. In regions I and III outside the barrier, the wave numbers are

$$
\begin{aligned}
& k_{I}=k_{I I I}=\frac{\sqrt{2 m E}}{\hbar} \text { since } \mathrm{V}=0 \quad \text { while in the barrier region } \\
& k_{I I}=\frac{\sqrt{2 m\left(E-V_{o}\right)}}{\hbar}
\end{aligned}
$$

Analogy with optics: when light in air enters a piece of glass (with a different index of refraction) its wavelength changes and at the airglass interface some light is reflected and some is transmitted - the same will happen here in QM with our particle (remember $k=2 \pi / \lambda$)

Solve SE in each of the 3 regions and match the BC at the barrier walls - first for $\mathrm{E}>\mathrm{V}_{\text {。 }}$

Barriers \& Tunneling (for $E>V_{0}$) - 2

- Probability of particle being reflected $=R$

$$
R=\frac{\mid\left.\Psi_{1}(\text { reflected })\right|^{2}}{\left.\mid \Psi_{1} \text { (incident }\right)\left.\right|^{2}}=\frac{B^{*} B}{A^{*} A}
$$

- Probability of particle being transmitted $=\mathrm{T}$

$$
T=\frac{\mid\left.\Psi_{\text {III }}(\text { transmitted })\right|^{2}}{\mid\left.\Psi_{1}(\text { incident })\right|^{2}}=\frac{F^{*} F}{A^{*} A}=1-R
$$

- Result for T is $T=\left[1+\frac{V_{0}^{2} \sin ^{2}\left(k_{n} L\right)}{4 E\left(E-V_{0}\right)}\right]^{-1}$
- Can have $\mathrm{T}=1$ - when? When $\mathrm{k}_{I I} \mathrm{~L}=\mathrm{n} \pi$ reflections at $x=0$ and $x=L$ cancel out by interference

Barriers \& Tunneling (for $E<V_{0}$) - 3

- Re-solve SE and match BC - inside barrier in region II let $k_{I I}=\frac{\sqrt{2 m\left(V_{o}-E\right)}}{\hbar}>0$
- Then, similarly, we find that there is a probability for tunneling through the barrier $T=\left[1+\frac{V_{o}^{2} \sinh ^{2}\left(k_{H} L\right)}{4 E\left(V_{o}-E\right)}\right]^{-1}$
- For large $\mathrm{k}_{I I} \mathrm{~L}$ this be

$$
T=16 \frac{E}{V_{o}}\left(1-\frac{E}{V_{o}}\right) e^{-2 k_{I I} L}
$$

Uncertainty Principle explanation of Tunneling

- To penetrate a barrier of width L with wave-vector k (so $\Psi \sim e^{-2 k x}$), we have $\Delta x \sim k^{-1}$, but $\Delta x \Delta p \geq \hbar$, so $\Delta p \geq(\hbar / \Delta x)=\hbar k$
- Then, $\mathrm{K}_{\text {min }}=(\Delta \mathrm{p})^{2} / 2 \mathrm{~m}=\hbar^{2} \mathrm{k}^{2} / 2 \mathrm{~m}=\mathrm{V}_{\mathrm{o}}-\mathrm{E}$

Needed energy

Tunneling Applications

- First is electrician wiring- Al wires have oxide coating twisting wires works via tunneling
- α decay from nucleus
- Scanning probe microscopy

AFM

