Schrodinger Wave Equation

* Time-dependent SE
oP(x,t)  h* 0°FP(x,1)
ot 2m X

* Properties of solutions

— Linear: if ¥, and ¥, are solutions, so is
Y =aW¥,+b¥,, where a and b are constants

— A very useful solution is W(x,t) = Aexpli(kx-wt)]
— P(x,t)dx = W(x,t) W(x,t)dx

— Normalization: I P(x,t)dx:j P (x,t) P (X, t)dx =1

—00

i7i +VW(x,1)

— Boundary conditions:
* ¥ must be finite and single valued
« Y and its derivatives must be continuous and
* Y must approach 0 as x goes to infinity



Time-independent SE

« Separation of variables leads to the time-
. ] hz 82
independent SE: : WEX) Vi (X) = Ep(x)
m oX

- Sothat Y(x,t)=w(x)e™

« Stationary States: P(x) independent of
. * 2
time ; P(X) =y (w(x) =|v|



3D SE

* Generalizing the time-dependent SE to
3D, we have

2 2 2 2 2
iha—‘{’:—h 8\?+8\?+8E’ RV N TRRYAY
ot 2ml ox?  oy: oz 2m
* The time-independent SE becomes
hZ
——Vy+Vy =Ey
2m

* We will return to this later for the hydrogen
atom



Average Values = Expectation Values

* For discrete set: - Z NiX
Z N.
j XP(x)dx
* For continuous variable: ¢_-=
j P(x)dx
. In OM: j Xy (X)y (x)dx
(X)= = j Xy~ (X (X)dx

j w (w ()dx

» Foranyg(x):  (g(x)= j g ()p " (y (x)dx



Operators — momentum & energy

. ., 0

* Motivation foraattributing P=—-1h—

and E=ijp= OX
ot

 Operator expectation values:
(A)= | P (x,t) AW (X, t)dx

* So, b
(p)=-in [ ¥ (x.1) TP 4y and
. < OF (X, 1)
<E>_|hjoo\P (X,1) po dx

« Examples



Infinite Square-Well Potential

« Schrodinger equation within well — find solutions

and match to boundary conditions:
S NX
v, (X)=Asin (—

« Normalize wave functionsLto find A:

2 . (nxX
v, (X)= \/Esm (Tj

. . . 212
 Find possible energies: g _ 27 h n’E,
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SE In each

Finite Square Well

* Divide up space into 3 regions and solve

» Use matching W and 0¥ / ox at boundaries
to solve for coefficients

* Tunneling/penetration depth ideas tied in

with ungertainty principlg )
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Simple Harmonic Oscillator in 1D

 Hooke's Law gives a quadratic potential
energy

* Very important problem, since every V that
has a minimum can be approximated by a
quadratic V near the minimum
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Qualitative SE solutions to SHO
» SE for SHO dZWZ‘zm[E‘KXZJ‘”

2 22
« Writing ox= A °
M 2mE dy
a’ = o and = 2 we have 7 (a’X* = By

* Minimum energy E_ cannot =0 —a
calculation based on the uncertainty
principle shows that ho|lk _ho

E, =—.]—
2\m 2

+ Solutions are y, =H,(x)e™ "
with E, =(n +%)h\//c/ m = (n+%)ha)



SHO Solutions

Vix) Wave lunctions
nw=()"5 @902 First 4 energy levels (left) and wave
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Barriers and Tunneling

Classically, when a particle of energy E meets a barrier of height V,
if E>V the particle would pass right by, reducing its v when in the
region of V_ (since K = E —V_ =72 mv?). If the particle has energy
less than V it will always be reflected from the barrier wall because it
cannot enter the barrier.

In QM, things will be different because the particle has wave-like
properties. In regions | and Ill outside the barrier, the wave numbers

are Vv2mE .
ki =Ky = since V=0 while in the barrier region
J2m(E-V,)
ku = 7

Analogy with optics: when light in air enters a piece of glass (with a
different index of refraction) its wavelength changes and at the air-

glass interface some light is reflected and some is transmitted — the
same will happen here in QM with our particle (remember k = 27/A)

Solve SE in each of the 3 regions and match the BC at the barrier
walls — first for E >V



Barriers & Tunneling (for E>V,) - 2
. Probablllty of partlcle belng reflected = R

_ ¥ (reflected)|”
¥, (|nC|dent)| CAA
 Probability of partlcle belng transmitted = T

\\P“, (transmitted)|”
¥, (mmdent)\ TAA

° I _ VOZSinZ(ku L) N
Result for T is T—{1+ 4E(E_VO)}

« Can have T = 1-when? When k,L =nn -
reflections at x = 0 and x = L cancel out by

interference



Barriers & Tunneling (for E<V,) - 3

 Re-solve SE and match BC — inside

ier | i 2m(V, — E
barrier in region Il let | A m(\;o ) 0o

* Then, similarly, we find that there is a
probability for tunnellng through the barrier
V?sinh?(k, L)

T B 1 () uantum
L 4E(\/ E) _ }:()lehavior
2 b E):(ponential
. Forlarge kL thisbe [\ /o
N PP T / ' =
T=16—|1—— |e—™ _ | /( Sl-n 11111 dal
Vo Vo Sinusoidal B arrier

penetration or
tunneling



Uncertainty Principle explanation of

Tunneling

* To penetrate a barrier of width L with
wave-vector k (so W~e2%), we have
AX ~ k1, but AXx Ap 21, so Ap = (h/AX) = hk

« Then, K .. = (Ap)?/2m = h?k?/2m =V, —E

Needed energy
=V,-E l

E




Tunneling Applications
* First is electrician wiring- Al wires have oxide coating —
twisting wires works via tunneling 7 e
* o decay from nucleus e

e Scanning probe microscopy
Vi(r)

Coulomb potental
/(_ energy
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