
Schrödinger Wave Equation
• Time-dependent SE

• Properties of solutions
– Linear: if Ψ1 and Ψ2 are solutions, so is         

Ψ = aΨ1+bΨ2, where a and b are constants
– A very useful solution is Ψ(x,t) = Aexp[i(kx-ωt)]
– P(x,t)dx = Ψ*(x,t) Ψ(x,t)dx
– Normalization:

– Boundary conditions: 
• Ψ must be finite and single valued
• Ψ and its derivatives must be continuous and 
• Ψ must approach 0 as x goes to infinity
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Time-independent SE
• Separation of variables leads to the time-

independent SE: 

• So that 

• Stationary States:  P(x) independent of 
time ;   
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3D SE
• Generalizing the time-dependent SE to 

3D, we have

• The time-independent SE becomes

• We will return to this later for the hydrogen 
atom 
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Average Values = Expectation Values
• For discrete set:

• For continuous variable:

• In QM: 

• For any g(x):     
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Operators – momentum & energy
• Motivation for attributing

and 

• Operator expectation values:

• So,

• Examples
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Infinite Square-Well Potential
• Schrödinger equation within well – find solutions 

and match to boundary conditions:

• Normalize wave functions to find A:

• Find possible energies:  
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Finite Square Well
• Divide up space into 3 regions and solve 

SE in each
• Use matching Ψ and at boundaries 

to solve for coefficients
• Tunneling/penetration depth ideas tied in 

with uncertainty principle
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Simple Harmonic Oscillator in 1D
• Hooke’s Law gives a quadratic potential 

energy
• Very important problem, since every V that 

has a minimum can be approximated by a 
quadratic V near the minimum



Qualitative SE solutions to SHO
• SE for SHO
• Writing 

• Minimum energy Eo cannot = 0 – a 
calculation based on the uncertainty 
principle shows that

• Solutions are
with 
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SHO Solutions
First 4 energy levels (left) and wave 
functions (right)

Wave functions are plotted (left) and 
probability distributions (right)

Below is probability distribution for n = 10 
and the classical results (dotted line)



Barriers and Tunneling
Classically, when a particle of energy E meets a barrier of height Vo, 
if E>Vo the particle would pass right by, reducing its v when in the 
region of Vo (since K = E – Vo = ½ mv2).  If the particle has energy 
less than Vo it will always be reflected from the barrier wall because it 
cannot enter the barrier.  

In QM, things will be different because the particle has wave-like 
properties.  In regions I and III outside the barrier, the wave numbers 
are

while in the barrier region

Analogy with optics: when light in air enters a piece of glass (with a 
different index of refraction) its wavelength changes and at the air-
glass interface some light is reflected and some is transmitted – the 
same will happen here in QM with our particle (remember k = 2π/λ)

Solve SE in each of the 3 regions and match the BC at the barrier 
walls – first for E > Vo
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Barriers & Tunneling (for E>Vo)  - 2
• Probability of particle being reflected = R

• Probability of particle being transmitted = T

• Result for T is
• Can have T = 1- when?  When kIIL = nπ -

reflections at x = 0 and x = L cancel out by 
interference
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Barriers & Tunneling (for E<Vo)  - 3
• Re-solve SE and match BC – inside 

barrier in region II let

• Then, similarly, we find that there is a 
probability for tunneling through the barrier

• For large kIIL this becomes
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Uncertainty Principle explanation of 
Tunneling

• To penetrate a barrier of width L with 
wave-vector k (so Ψ~e-2kx), we have       
Δx ~ k-1, but Δx Δp ≥ ħ, so Δp ≥ (ħ/Δx) = ħk

• Then, Kmin = (Δp)2/2m = ħ2k2/2m = Vo – E

E
Vo

Needed energy 
= Vo - E



Tunneling Applications
• First is electrician wiring- Al wires have oxide coating –

twisting wires works via tunneling
• α decay from nucleus
• Scanning probe microscopy

http://www.almaden.ibm.com/vis
/stm/gallery.html

STM – metal 
coated

AFM

http://www.almaden.ibm.com/vis/stm/gallery.html
http://www.almaden.ibm.com/vis/stm/gallery.html
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