Setting up the H atom SE

-H atom problem has Coulomb potential in 3D SE with $\mu=$ reduced mass of electron

$$
i \hbar \frac{\partial \Psi}{\partial t}=E \Psi=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \Psi}{\partial x^{2}}+\frac{\partial^{2} \Psi}{\partial y^{2}}+\frac{\partial^{2} \Psi}{\partial z^{2}}\right)+V(x, y, z) \Psi
$$

-Better to work in spherical coordinates:

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \phi^{2}}+\frac{2 \mu}{\hbar^{2}}(E-V(r)) \Psi=0
$$

-Try separation of variables:
$\Psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)$
-Work out separate equations
For R, Θ, and Φ

Solutions

- Azimuthal eqn. is simplest: $\quad \Phi(\phi)=e^{ \pm i m_{\ell} \phi}$
- Radial eqn (Associated Laguerre eqn):

$$
\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}+\frac{2 \mu}{\hbar^{2}}\left(E-V-\frac{\hbar^{2}}{2 \mu} \frac{\ell(\ell+1)}{r^{2}}\right) R=0
$$

- One solution (to $\ell=0$) is $R(r)=A e^{-r / a_{o}}$
- Eqn for $\Theta: \frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)+\left[\ell(\ell+1)-\frac{m_{\ell}^{2}}{\sin ^{2} \theta}\right] \Theta=0$

Solutions are Legendre polynomials
Note: $\Theta(\theta) \Phi(\phi)=Y(\theta, \phi)=$ spherical harmonics

Quantum numbers (QN)

- These arise from separation constants:

$$
m_{\ell}, \quad \ell \quad[\operatorname{via} \quad \ell(\ell+1)], \text { and } n
$$

- $\mathrm{n}=$ principal $\mathrm{QN}, \mathrm{n}=1,2,3, \ldots$
determines $\quad E_{n}=-\frac{E_{o}}{n^{2}} \quad$ as in Bohr theory
- $\ell=$ orbital angular momentum QN
where $\ell=0,1,2, \ldots,(n-1)$
determines $L=\sqrt{\ell(\ell+1)} \hbar$
- $\mathrm{m}_{\ell}=$ magnetic QN ,
where $m_{\ell}=-\ell,-\ell+1, \ldots, 0, \ldots, \ell-1, \ell$ determines $L_{z}=m_{\ell} \hbar$

Physical Meaning of QN

- n comes from $R(r)$ eqn - quantizes orbital r; so quantizes energy
- ℓ comes from $\Theta(\theta)$ and sets magnitude of L $\mathrm{s}, \mathrm{p}, \mathrm{d}, \mathrm{f}$ notation
- m_{ℓ} comes from $\Phi(\Phi)$ and determines spatial quantization
- degeneracy

Removing Degeneracy - B fields \&

Zeeman Effect

- Atoms placed in a B field interact via magnetic moment to remove degeneracy - fine structure = splitting into 2 or more closely spaced energy levels
- Derive magnetic moment $\vec{\mu}=-\frac{e}{2 m} \vec{L}$ and its $P E=V_{B}=-\vec{\mu} \cdot \vec{B}$
- Normal Zeeman effect:

$$
\begin{array}{r}
\mu_{z}=-\frac{e \hbar}{2 m} m_{\ell}=-\mu_{B} m_{\ell} \\
V_{B}=-\mu_{\mathrm{z}} B=+\mu_{B} m_{\ell} B
\end{array}
$$

Normal Zeeman Effect

- Splitting of $2 p$ level to give 3 different transitions - removing degeneracy

$$
\begin{aligned}
& n=2 \begin{array}{l}
\ell=1 \\
\vec{B}=0
\end{array} \quad \begin{array}{l}
\frac{\ell=1}{\uparrow \Delta E=} \mu_{\mathrm{B}} B \\
\frac{m_{\ell}}{1} \\
\frac{1 \Delta E}{\vec{B}=B_{0} \hat{k}}
\end{array} \\
& \text { Energy } \\
& \text { 1s } \frac{\ell=0}{\vec{B}=0}
\end{aligned}
$$

Stern-Gerlach Expt

- In a non-uniform B field, there will be a force on a magnetic dipole (in addition to a torque)
- The force is given by $F_{z}=-\frac{d V_{B}}{d z}=\mu_{z} \frac{d B}{d z}=-\mu_{\mathrm{B}} m_{\ell} \frac{d B}{d z}$
- With silver atoms in s state saw 2 lines, not 0 or 3

Electron Spin

- Pauli first proposed a fourth QN to explain Stern-Gerlach results but its significance was not clear
- Goudsmit \& Uhlenbeck proposed electron spin $s=1 / 2$ and $m_{s}= \pm 1 / 2$
- Gyromagnetic ratios:

$$
\begin{aligned}
& \vec{\mu}_{\ell}=-\frac{g_{e} \mu_{B} \vec{L}}{\hbar}=-\frac{\mu_{B} \vec{L}}{\hbar} \rightarrow V_{B}=\mu_{B} m_{\ell} B \\
& \vec{\mu}_{s}=-\frac{g_{s} \mu_{B} \vec{S}}{\hbar}=-2 \frac{\mu_{B} \vec{S}}{\hbar} \rightarrow V_{B}=2 \mu_{B} m_{s} B
\end{aligned}
$$

(a)

(b)

H atom energy levels, transitions \&

 selection rules- $4 \mathrm{QN}: \mathrm{n}, \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}$ - in H n determines energies; in many electron atoms, degeneracy is removed from internal B fields
- Selection rules: allowed

$$
\begin{aligned}
& \Delta \ell= \pm 1 \\
& \Delta m_{\ell}=0, \pm 1
\end{aligned}
$$

vs forbidden

- Due to photon carrying one unit of L or (\dagger)

Probability Distribution Functions

- Wave picture of H atom:
$d P=\psi^{*}(r, \theta, \phi) \psi(r, \theta, \phi) d \tau \quad$ where $d \tau=r^{2} \sin \theta d r d \theta d \phi$
- If we want to look at the radial dependence then $P(r) d r=r^{2} R^{*}(r) R(r) d r$
- Example of most probable radius in 1 s and 2 p vs. average r vs. probability

Radial wave functions ($R_{n e}$)

Radial probability distribution $\left(P_{n \ell}\right)$

(a)

(b)

