Pauli Exclusion Principle

• To understand multi-electron atoms, Pauli, in 1925, proposed the exclusion principle:

No two electrons in an atom may have the same set of quantum numbers

- Holds for all fermions with half integral spins
- This together with the idea that atoms will occupy the lowest energy levels available allows us to understand the Periodic Table
- Imagine building up the elements in the Periodic Table one at a time starting from H

Constructing the Periodic Table

Table	8.1	Order of Electron Filling in Atomic Subshells										
n	l	Subshell	Subshell Capacity	Total Electrons in All Subshells								
1	0	1 <i>s</i>	2	2								
2	0	25	2	4								
2	1	2p	6	10								
3	0	35	2	12								
3	1	3p	6	18								
4	0	4 <i>s</i>	2	20								
3	2	3d	10	30								
4	1	4p	6	36								
5	0	5 <i>s</i>	2	38								
4	2	4d	10	48								
5	1	5p	6	54								
6	0	6 <i>s</i>	2	56								
4	3	4f	14	70								
5	2	5d	10	80								
6	1	6 <i>p</i>	6	86								
7	0	7 <i>s</i>	2	88								
5	3	5f	14	102								
6	9	64	10	119								

Periodic Table of the Elements

Periodic	Table	of	Elements
----------	-------	----	----------

Closed		Alkal	ine															Rare
shells	Alkali	s eart	hs													H	alogen	s gases
Groups:	1	2											13	14	15	16	17	18
	1	1																2
	н																	He
																		0.50
	1s	l											-	La.	-			152
1.2	3	4 											5	6	7	8	9	10
13-	1.1	ве											в	L C	N	0	r	Ne
	25	25											252 261	252 262	25 ² 26 ³	25 ² 26 ⁴	252 263	25 206
	11	12											13	14	15	16	17	18
$2s^2 2p^6$	Na	Mg				Tes	neitio	, elem	onte				Al	Si	P	S	CI	Ar
			_			110	uisiuoi		ents									
	351	3s ²	3	4	5	6	7	8	9	10	11	12	$3s^2 - 3p^1$	$3s^2$ $3p^2$	$3s^2 3p^3$	$3s^2$ $3p^4$	$3s^2 \cdot 3p^5$	3s2 3p6
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
3s23p	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	11	2.92	201.47			20.01		a 6 1 7			a 18 a 1	a.19 . 7	3d 10 4s2	3d ¹⁰ 4s ²	3d 10 4s2	3d ³⁰ 4s ²	3d 10 4s2	3d 10 4s
	37	38	20	40	41	49	43	44	45	46	47	30 45 48	40	50	9p 51	1p 59	59	1p 54
$3d^{10}4s^24p^6$	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
													4410 552	$4d^{20}5s^2$	4010 55	4410 552	4d ¹⁰ 5s ²	4d ¹⁰ 5s ¹
	5s ¹	5s ²	$4d^1 5s^2$	$4d^2 - 5s^2$	4d 4 5s1	4d 5 5s1	44 55	4d ⁷ 5s ¹	4d8 5s1	4410	4d ³⁰ 5s ¹	$4d^{20}5s^2$	$5p^3$	5p2	5p3	$5p^4$	503	5p ⁶
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
$4d^{10}5s^25p^6$	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
				$4f^{11}5d^2$	$4f^{11}5d^3$	4f ¹⁴ 5d ⁴	4f ¹⁴ 5d ⁵	4f ¹⁴ 5d ⁶		4f ¹⁴ 5d ⁹	4f ¹⁴ 5d ³⁰	4f ¹¹ 5d ¹⁰	$4f^{14} 5d^{9}$	4f ¹⁴ 5d ³⁰	4f ¹¹ 5d ¹⁰	4f ¹⁴ 5d ¹⁰	4f ¹⁴ 5d ¹⁰	$4f^{14} 5d^{10}$
	6s ¹	6s ²	5d' 6s'	6s ²	6s*	6s ²	652	65	4f"5d"	6s ¹	6s ¹	6s ²	6s" 6p'	6s ² 6p ²	6s ² 6p ³	6s" 6p"	64° 6 <i>p</i> °	6s ² 6p ⁶
4 (145, 1106, 26, 6	8/ Fr	88 Ra	89	104 Df	105 Db	106 See	107 Bb	108	109 M	110 De	P.	112						
1 50 05 0p		na	AC	KI CH	Sell and	og	DII CI	sell of	sell of	LUS C	Ng Seller	Sel1 (1.10)						
	751	752	$6d^1 \pi^2$	7^2 of	37 0d	57 6d 72	5) 64 72	57 6d 75 ²	7,2	3 ¹ 0 <i>1</i>	7 ¹	7 ²						
					-													

	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Lanthanides	$4f^{2}6s^{2}$	4f ³ 6s ²	4f ⁴ 6s ²	4f ⁵ 6s ²	4f ⁶ 6s ²	4f ⁷ 6s ²	$4f^7 6s^2$ $5d^1$	4f ⁹ 6s ²	4f ¹⁰ 6s ²	4f ¹¹ 6s ²	4f ¹² 6s ²	4f ¹³ 6s ²	4/ ¹⁴ 6s ²	4f ¹¹ 5a 6s ²
Actinides	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	$6d^2 7s^2$	7s ²	7s ²	7x ²	5f ⁶ 7s ²	5f ⁷ 7s ²	$7s^2$	59 64 78 ²	5f ¹⁰ 7s ²	5f ¹¹ 7s ²	$5f^{12} 7s^2$	5f ¹³ 7s ²	5f ¹¹ 7s ²	73 ²

© 2006 Brooks/Cole - Thomson

Ionization Energy vs Z

 This is the minimal energy needed to ionize an atom – note the lowest ionization energies are for atoms w/ single electrons in p or d subshells

Atomic radii vs Z

Note that smallest radii are for noble gases with filled subshells

Periodic Table of the Elements

Periodic	Table	of	Elements
----------	-------	----	----------

Closed		Alkal	ine															Rare
shells	Alkali	s eart	hs													H	alogen	s gases
Groups:	1	2											13	14	15	16	17	18
	1	1																2
	н																	He
																		0.50
	1s	l											-	La.	-			152
1.2	3	4 											5	6	7	8	9	10
13-	1.1	ве											в	L C	N	0	r	Ne
	25	25											252 261	252 262	25 ² 26 ³	25 ² 26 ⁴	252 263	25 206
	11	12											13	14	15	16	17	18
$2s^2 2p^6$	Na	Mg				Tes	neitio	, elem	onte				Al	Si	P	S	CI	Ar
			_			110	uisiuoi		ents									
	351	3s ²	3	4	5	6	7	8	9	10	11	12	$3s^2 - 3p^1$	$3s^2$ $3p^2$	$3s^2 3p^3$	$3s^2$ $3p^4$	$3s^2 \cdot 3p^5$	3s2 3p6
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
3s23p	K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	11	2.92	201.47			20.01		a 6 1 7			a 18 a 1	a.19 . 7	3d 10 4s2	3d ¹⁰ 4s ²	3d 10 4s2	3d ³⁰ 4s ²	3d 10 4s2	3d 10 4s
	37	38	20	40	41	49	43	44	45	46	47	30 45 48	40	50	9p 51	1p 59	59	1p 54
$3d^{10}4s^24p^6$	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
													4410 552	$4d^{20}5s^2$	4010 55	4410 552	4d ¹⁰ 5s ²	4d ¹⁰ 5s ¹
	5s ¹	5s ²	$4d^1 5s^2$	$4d^2 - 5s^2$	4d 4 5s1	4d 5 5s1	44 55	4d ⁷ 5s ¹	4d8 5s1	4410	4d ³⁰ 5s ¹	$4d^{20}5s^2$	$5p^3$	5p2	5p3	$5p^4$	503	5p ⁶
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
$4d^{10}5s^25p^6$	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
				$4f^{11}5d^2$	$4f^{11}5d^3$	4f ¹⁴ 5d ⁴	4f ¹⁴ 5d ⁵	4f 14 5d 6		4f ¹⁴ 5d ⁹	4f ¹⁴ 5d ³⁰	4f ¹¹ 5d ¹⁰	$4f^{14} 5d^{9}$	4f ¹⁴ 5d ³⁰	4f ¹¹ 5d ¹⁰	4f ¹⁴ 5d ¹⁰	4f ¹⁴ 5d ¹⁰	$4f^{14} 5d^{10}$
	6s ¹	6s ²	5d' 6s'	6s ²	6s*	6s ²	652	65	4f"5d"	6s ¹	6s ¹	6s ²	6s" 6p'	6s ² 6p ²	6s ² 6p ³	6s" 6p"	64° 6 <i>p</i> °	6s ² 6p ⁶
4 (145, 1106, 26, 6	8/ Fr	88 Ra	89	104 Df	105 Db	106	107 Bb	108	109 M	110 De	P.	112						
1 50 05 0p		na	AC	KI CH	Sell and	og	DII CI	sell of	sell of	DS CHER	Ng Seller	Sel1 (1.10)						
	751	752	$6d^1 \pi^2$	7^2 of	37 0d	57 6d 72	5) 64 72	57 6d 75 ²	7,2	3 ¹ 0 <i>a</i>	7 ¹	7 ²						
					-						-							

	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Lanthanides	$4f^{2}6s^{2}$	4f ³ 6s ²	4f ⁴ 6s ²	4f ⁵ 6s ²	4f ⁶ 6s ²	4f ⁷ 6s ²	$4f^7 6s^2$ $5d^1$	4f ⁹ 6s ²	4f ¹⁰ 6s ²	4f ¹¹ 6s ²	4f ¹² 6s ²	4f ¹³ 6s ²	4/ ¹⁴ 6s ²	4f ¹¹ 5a 6s ²
Actinides	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	$6d^2 7s^2$	7s ²	7s ²	7x ²	5f ⁶ 7s ²	5f ⁷ 7s ²	$7s^2$	59 64 78 ²	5f ¹⁰ 7s ²	5f ¹¹ 7s ²	$5f^{12} 7s^2$	5f ¹³ 7s ²	5f ¹¹ 7s ²	73 ²

© 2006 Brooks/Cole - Thomson

Assorted Comments on Periodic Table

- Inert gases: last column; closed subshells; no valence e⁻; chemically inert; zero net spin; poor electrical conductivity; monoatomic gases at room T
- Alkalis (H and metals): first column; single s valence electron; easily form + ion; good electrical conductors
- Alkaline Earths 2nd column; 2 s shell e⁻ can extend far from nucleus so are large in size; ions are +2 charged – easily form (low ionization E) – fairly active chemically
- Halogens 2nd column from right; chemically very active with valence = -1; form strong ionic bonds
- Transition Metals 3 rows of 3d, 4d, 5d subshells have some interesting unpaired spin elements (Fe, Co, Ni) = ferromagnetic
- Lanthanides or rare earths also have some unpaired spin elements
- Actinides all radioactive

Total Angular Momentum

- Orbital (L) and Spin (S) angular momentum add to produce a total angular momentum (J) where $\vec{J} = \vec{L} + \vec{S}$
- For single electron atoms, $s = \frac{1}{2}$ and $\ell =$ integer, so $m_{\ell} =$ integer and $m_{s} = \frac{1}{2}$ integer; therefore m_{j} (ranging from –j to +j) must be $\frac{1}{2}$ integer and $j = \ell \pm s = \ell \pm \frac{1}{2}$
- \vec{J} follows the same rules as other angular momenta; $J = \sqrt{j(j+1)} \hbar$ and $J_z = m_J \hbar$
- j and m_j are "better" QN than m_l and m_s because the total angular momentum is conserved

Spin-Orbit Coupling and J

- S and L couple through $V_{s\ell} = -\mu_s \cdot B_{internal}$
- Magnetic moment ~ S and B_{int} ~ L hence spinorbit coupling $V_{s\ell} \sim \vec{S} \cdot \vec{L}$

With an external B

• Addition of L & S for $\ell = 1$, s = $\frac{1}{2}$

@ 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thoms

Selection Rules for J

- Selection rules are Δm_i and Δj both = 0, ±1
- For Hydrogen fine structure splitting (from spin-orbit coupling) example:

More complex fine structure for Na

- Na (a single e⁻ atom) energy levels compared to those of H
- Strong attraction of inner electrons causes E levels to be reduced relative to H

@ 2006 Brooks/Cole - Thomson

LS vs JJ Coupling in multi-e⁻ atoms

- In adding up the total angular momentum for a multi (2)-electron atom, we could:
 - Add L = $L_1 + L_2$ and S = $S_1 + S_2$ and then think of L and S interacting – so-called LS coupling
 - Or add $J_1 = L_1 + S_1$ and $J_2 = L_2 + S_2$ and think of J_1 and J_2 interacting – so-called JJ coupling
 - In weak B fields and smaller atoms, LS coupling is appropriate while in larger atoms or at higher B fields, JJ coupling theories work better

Two e⁻ atoms and LS Coupling

- Two spin states singlet (S=0) and triplet (S=1)
- There are 2S+1 (= multiplicity) states for a given L

Table 8.2 **Spectroscopic Symbols for Two** Electrons: One in 4p and One in 4d Spectroscopic S L J Symbol $4^{1}P_{1}$ 1 1 $4^{1}D_{2}$ 0 (singlet) 2 2 3 3 $4^{1}F_{3}$ $4^{3}P_{9}$ 2 1 (triplet) 1 1 $4^{3}P_{1}$ $4^{3}P_{0}$ 0 3 $4^{3}D_{3}$ 2 2 $4^{3}D_{2}$ 1 (triplet) $4^{3}D_{1}$ 1 $4^{3}F_{4}$ 4 $4^{3}F_{3}$ 3 3 1 (triplet) $4^{3}F_{2}$ 2

