Quiz Solutions

1. (a) First find
$$\gamma$$
: $\gamma = \frac{1}{\sqrt{1 - (2/3)^2}} = 1.342$ -- Now let $T = T_{\text{Francis}}$ and $T_o = T_{\text{Maria}}$

So $T = \gamma T_o$ and we want $T - T_o = (\gamma - 1) T_o = 1$ s and we are looking to find T (not $T_o !!!!$) This gives us $T_o = 2.93$ s so $T = \gamma T_o = 3.93$ s

- (b) You should all have gotten this Maria sees Francis moving (relative to herself at rest) and therefore she sees his clocks running slow.
- (c) Francis will see Maria to be 1.8 m tall because lengths perpendicular to relative motion are not affected by relativity. The spacecraft will appear contracted by the factor γ , so that its length will be 50/1.342 = 37.3 m long.
- 2. (a) $E = 200 \, E_o$, so $\gamma = 200$. Then $K = (\gamma 1)E_o = 199 \, (0.511 \, MeV) = 101.7 \, MeV$; Also, since $\gamma = 200$, we find $\beta = 0.9999875$, so v = 0.9999875 c. Finally, $p = \gamma mv = 200$ (0.511 MeV/c^2)(0.9999875 c) = 102.2 MeV/c. [Note: this can also be found from $E^2 = E_o^2 + p^2c^2$, so that $p^2c^2 = (E^2 E_o^2) = (200E_o)^2 E_o^2 = 39999 \, (0.511 \, MeV)^2 = 10444 \, MeV^2$, giving pc = same value]
- (b) New v must be 0.99999375 c, so that the new $\gamma = 282.8$. Therefore the final $E = 282.8E_o$ and the additional energy is $82.8 E_o = 42.3 \text{ MeV}$.