Quiz Solutions

1. (a) First find $\gamma: \gamma=\frac{1}{\sqrt{1-(2 / 3)^{2}}}=1.342 \quad-$ Now let $\mathrm{T}=\mathrm{T}_{\text {Francis }}$ and $\mathrm{T}_{\mathrm{o}}=\mathrm{T}_{\text {Maria }}$

So $T=\gamma \mathrm{T}_{\mathrm{o}}$ and we want $\mathrm{T}-\mathrm{T}_{\mathrm{o}}=(\gamma-1) \mathrm{T}_{\mathrm{o}}=1 \mathrm{~s}$ and we are looking to find T (not T_{o} !!!)
This gives us $\mathrm{T}_{\mathrm{o}}=2.93 \mathrm{~s}$ so $\mathrm{T}=\gamma \mathrm{T}_{\mathrm{o}}=3.93 \mathrm{~s}$
(b) You should all have gotten this - Maria sees Francis moving (relative to herself at rest) and therefore she sees his clocks running slow.
(c) Francis will see Maria to be 1.8 m tall because lengths perpendicular to relative motion are not affected by relativity. The spacecraft will appear contracted by the factor γ, so that its length will be $50 / 1.342=37.3 \mathrm{~m}$ long.
2. (a) $\mathrm{E}=200 \mathrm{E}_{\mathrm{o}}$, so $\gamma=200$. Then $\mathrm{K}=(\gamma-1) \mathrm{E}_{\mathrm{o}}=199(0.511 \mathrm{MeV})=101.7 \mathrm{MeV}$; Also, since $\gamma=200$, we find $\beta=0.9999875$, so $v=0.9999875 \mathrm{c}$. Finally, $\mathrm{p}=\gamma \mathrm{mv}=200$ $\left(0.511 \mathrm{MeV} / \mathrm{c}^{2}\right)(0.9999875 \mathrm{c})=102.2 \mathrm{MeV} / \mathrm{c}$. [Note: this can also be found from $\mathrm{E}^{2}=\mathrm{E}_{\mathrm{o}}{ }^{2}+\mathrm{p}^{2} \mathrm{c}^{2}$, so that $\mathrm{p}^{2} \mathrm{c}^{2}=\left(\mathrm{E}^{2}-\mathrm{E}_{\mathrm{o}}{ }^{2}\right)=\left(200 \mathrm{E}_{\mathrm{o}}\right)^{2}-\mathrm{E}_{\mathrm{o}}{ }^{2}=39999(0.511 \mathrm{MeV})^{2}=10444 \mathrm{MeV}^{2}$, giving $\mathrm{pc}=$ same value]
(b) New v must be 0.99999375 c , so that the new $\gamma=282.8$. Therefore the final $\mathrm{E}=282.8 \mathrm{E}_{\mathrm{o}}$ and the additional energy is $82.8 \mathrm{E}_{\mathrm{o}}=42.3 \mathrm{MeV}$.

