Introduction to Spectroscopy

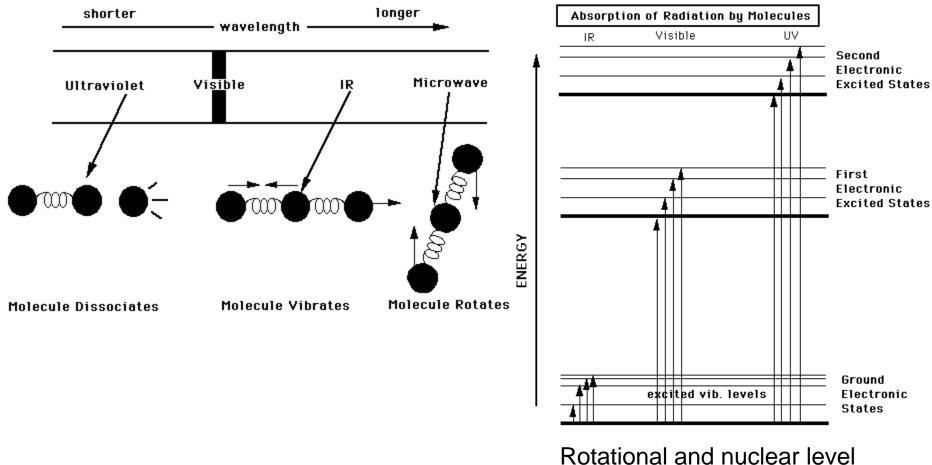
- Spectroscopy = interaction of matter w/ electromagnetic radiation
- Entire rest of course:
 - General ideas
 - Uv-vis absorption
 - IR
 - NMR
 - X-ray

EM spectrum

Photons – wave-particle duality EM waves: $\vec{E}(x,t) = \vec{E}_o \cos\left(\frac{2\pi x}{\lambda} - \frac{2\pi t}{T}\right)$ where T=1/f; v=f λ In 1 dimension

EM radiation

- Wave phenomena:
 - Interference
 - Diffraction
 - polarization
- Particle-like properties: photons
 - Energy = hf = hc/ λ
 - Intensity = (# photons/sec/area) $\propto |E|^2$
 - Photoelectric effect, Compton scattering
 - Localized wave packet


Interactions with matter

- Ionizing enough energy to liberate e⁻
- Non-ionizing in general: reflection, transmission or absorption
 - Absorbed radiation may be re-radiated (scattered) at the original frequency (Rayleigh scattering) or at a different frequency (Raman, Brillouin, fluorescence, etc.) or be degraded to heat or initiate a photochemical event or ...
- Energy levels quantized allowed energies – predicted by quantum mechanics for atomic/molecular systems

Energy Levels

- H atom simplest: $E_n = -13.6/n^2 \text{ eV}$; transitions between levels; absorption/emission lines
- Classify E levels into 4 types:
 - Electronic due to orbital motion of e⁻; lowest = ground state quantum number n, with typical $\Delta E \sim eV$ (remember k_BT ~ 1/40 eV at Room T); transitions produces uv-vis spectra
 - Vibrational spring-like oscillations of atoms; if the molecule has N atoms, then 3N coordinates are needed to specify positions; of these 3 give c of m & 3 give overall rotation about c of m the rest (3N-6) describe relative positions of atoms and give rise to vibrational modes (large number for macromolecule); $\Delta E \sim 0.1$ eV typically and these give rise to IR spectra
 - Rotational specifies overall rotation of molecule; ∆E~0.01 eV gives a far IR (or microwave) spectra contribution
 - Nuclear energy levels these have $\Delta E \sim 10^{-4} 10^{-6}$ eV and are important for NMR

Energy Levels

not shown here

Electron on a spring model

• Damped, driven harmonic oscillator:

$$ma = F_{net} = -kx - fv + F_{applied}$$
 or

$$m\ddot{x} + f\dot{x} + kx = F_{applied} = F_o \cos \omega t$$

• Solution is of the form: In-phase $x = x_1 \cos \omega t + x_2 \sin \omega t$ where $x_1 = F_o \left[\frac{m(\omega_o^2 - \omega^2)}{m^2(\omega_o^2 - \omega^2)^2 + f^2 \omega^2} \right]$ and $x_2 = F_o \left[\frac{f\omega}{m^2(\omega_o^2 - \omega^2)^2 + f^2 \omega^2} \right]$ with $\omega_o = \sqrt{\frac{k}{m}}$

Electron on a spring II

- Limiting case of negligible damping (f ~ 0) then $x_1 \rightarrow \frac{F_o}{m(\omega^2 - \omega^2)}$ and $x_2 \rightarrow 0$
 - Only in-phase motion (purely elastic) and can have resonance when $\omega \rightarrow \omega_o$ so that amplitude grows
 - Since x₂ goes to 0, we can connect it with damping or energy loss
- What is the connection of this with spectroscopy?
 - $F_{applied}$ is due to EM radiation (monochromatic at ω)
 - When ω is far from ω_o then e⁻ is forced to oscillate at ω and not the natural frequency of the bond energy is absorbed and there is a transition to an excited state explains absorption in a simple classical picture what happens next?
 - Accelerating charges radiate according to classical physics

Electron on a spring III

• EM Radiation:

$$E_{scattered} \propto acceleration of e^{-} = \frac{d^{2}(x_{1} \cos \omega t)}{dt^{2}} = \frac{-F_{o}\omega^{2} \cos \omega t}{m(\omega_{o}^{2} - \omega^{2})}$$
Or
$$E_{scattered} \propto \frac{-F_{o} \cos \omega t}{m\left(\frac{\omega_{o}^{2}}{\omega^{2}} - 1\right)^{2}}$$
We can find 3 limiting cases of this radiation:
1. Rayleigh limit ($\omega < \omega_{o}$) -
$$I_{scattered} \sim \frac{\omega^{4}}{\omega_{o}^{4}} \sim \frac{\lambda_{o}^{4}}{\lambda^{4}} \sim \frac{1}{\lambda^{4}}$$

very strong wavelength dependence – blue sky/sunsets

2. Thompson limit ($\omega >> \omega_o$) –

 $I_{scattered}$ ~ constant independent of frequency

x-rays are color blind – no wavelength dependence

Electron on a spring IV

 When ω ~ ω_o then we need to include damping – this results in new phenomenon = dispersion and absorption – dispersion is the variation in the index of refraction with frequency, leading to phase changes in the light that are frequency dependent