
X-ray diffraction 
• X-rays discovered in 1895 – 1 week 

later first image of hand. 
• X-rays have λ ~ 0.1 – few A 
• No lenses yet developed for x-rays – 

so no possibility of an x-ray camera or 
microscope.  Instead, the diffraction 
pattern has all the information on 
amplitudes and phases to re-
construct an image, even w/o a lens 
to reform the x-rays – we need a 
method to analyze the diffraction 
pattern 



How do we get X-rays? 
• The cathode is heated by a heat 

source to create an electron 
beam. 

• The beam of electrons is then 
accelerated by the high voltage 
source, allowing them to collide 
with the metal target (usually 
Tungsten) 

• X-rays are produced when the 
electrons are suddenly 
decelerated upon collision with the 
metal target (Brehmsstrahlung)  

• If the bombarding electrons have 
sufficient energy, they can knock 
an electron out of an inner shell of 
the target metal atoms. Then 
electrons from higher states drop 
down to fill the vacancy, emitting 
x-ray photons (characteristic x-
rays) 



X-ray production Spectrum  
• The characteristic 

x-rays, shown as 
two sharp peaks 
in the illustration 
occur when 
vacancies are 
produced in the 
n=1 or K-shell of 
the atom 

• The x-rays 
produced by 
transitions from 
the n=2 to n=1 
levels are called 
K-alpha x-rays 

• The x-rays 
produced in the 
transition from 
n=3  n=1  are 
called K-beta x-
rays.  



Synchrotron Radiation 
• most devices can only generate one type of 

electromagnetic radiation  
• light globes emit visible light, heat lamps emit infrared 

light and X-ray tubes emit X-rays.  
• Synchrotron radiation extends over a broad range, from 

the infrared to X-rays, and different parts of this broad 
spectrum can be used for different purposes.  

• the intensity of light being produced is a million times 
brighter than sunlight and a billion times greater than the 
radiation from a typical laboratory X-ray source  

• The emerging beams are extremely fine – just a few 
thousandths of a millimeter across – and are emitted in 
extremely short pulses, typically 10-100 picoseconds in 
length  



Detectors 
• The simplest x-ray detector is x-ray sensitive film 

(cameras) 
– Cameras can direct reflections to films in useful arrangements, 

allowing determination of indices and intensities for thousands of 
reflections on a single film 

• Scintillation counters 
– Count x-ray photons and give accurate intensities over a wide 

range 
– consists of a transparent crystal (usually phosphor), and plastic 

containing anthracene, that fluoresces when struck by ionizing 
radiation 

– A photomultiplier tube (PMT) measures the light from the crystal 
and is attached to an electronic amplifier and other electronic 
equipment to count and possibly quantify the amplitude of the 
signals produced by the photomultiplier 



Diffractometer 

• A diffractometer 
usually consists of: 
–  a source of radiation 
–  a monochromator to 

choose the 
wavelength 

–  slits to adjust the 
shape of the beam 

–  a sample and a 
detector 

X-ray Source 

Detector 
Sample 



Goniometer 
• In all types of data 

collection, the crystal is 
placed on a goniometer 
head, which allows the 
crystal orientation to be set 

• The head consists of: 
–  a holder for a capillary tube-

which contains the crystal  
– two arcs-for rotating the 

crystal 40° in each 
perpendicular plane 

–  and two dovetail sledges-
which allow translation of the 
arcs to center the crystal on 
the axis of rotation 

 



Crystal Growth II 
• Methods for growing crystals: 

– Vapor Diffusion 
• preferred method because it involves straightforward setup and the 

crystals are harvested with ease  
• drop of the protein is equilibrated with a large solution and then volatile 

species such as water, ions and certain solutes will diffuse between the 
drop and the solution until equilibrium is reached  

• Hope is that an increase in protein concentration will bring the protein to 
within the crystallization phase  

– Dialysis 
• protein solution is dialyzed with a crystallization solution, in which the 

protein concentration is kept constant  
– Seeding 

• used when the crystals are too small for x-ray diffraction.  
• The crystal is added to a new drop of protein solution, and the crystal 

then acts as a nucleus for the larger crystal to grow  
 



(c) Crystals suitable for X-ray 
analysis (size approximately 
0.15 × 0.05 × 0.05  mm) after a 
second microseeding 
procedure with the crystals 
shown in (b).  

(a) Thin crystals obtained without 
seeding.  

(b) Crystals after the first 
microseeding procedure of 
reduced concentrations of the 
precipitant sodium citrate.  

Crystals produced in vapor 
diffusion using microseeding  

Crystals grown by normal 
vapor diffusion without 
microseeding. Conditions are 
the same as lower image. 



Bravais Lattices 
• 14 basic types of crystal structures 
• 3 fundamental repeat vectors a, b, c 



Biological Crystals 
• Crystals have a repeating structure on the 

lattice which is not a single atom, but a 
single macromolecule 



Crystal Diffraction 
• Bragg diffraction from crystal planes 

 
 
 
 
 

• Constructive interference when  
 nλ = 2dsinθ  − note θ defined above 

● 
 

● ● ● 
 

● 
 

● ● 
 

● 
● ● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● ● 
● ● ● ● ● ● ● ● ● 

d 

θ 



Von Laue Equations 
• In a 1-D crystal, with spacing a, we can write (when angle 
in ≠ angle out) that for constructive interference PD = a(cosα 
– cosαo) = hλ – with αο = 90ο get conical surfaces for max. so 
on a piece of film get hyperbolas = layer lines 



 



 



Generalized Bragg Equation 
• Result is 

 
• Compare to Bragg equation in 1 dim: 

 
 

• So, only at certain locations will there be 
constructive interference – get a set of bright 
spots in the diffraction pattern and, with lots of 
patience and effort, can use them to deduce the 
crystal lattice structure of the molecule being 
studied 
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Miller Indices – Bragg Planes 

Rules for Miller Indices:  
1. Determine the intercepts 
of the face along the 
crystallographic axes, in 
terms of unit cell 
dimensions.  
2. Take the reciprocals  
3. Clear fractions & reduce 
to lowest terms  
For example, if the x-, y-, 
and z- intercepts are 2, 1, 
and 3, the Miller indices are 
calculated as:  
Take reciprocals: 1/2, 1/1, 
1/3  
Clear fractions (multiply by 
6): 3, 6, 2  
Reduce to lowest terms 
(already there)  

 



Reciprocal (Fourier) Space 



How can we observe diffraction? 
• We want to get as many spots as possible 

so we need to rotate/oscillate the crystal 
being studied to get all possible “Bragg 
planes” giving rise to interference spots 

• Or – we can use a “powder” of small 
crystallites – with randomly oriented axes 
– to see an average = powder diffraction 
pattern (but lose lots of detailed 
information) 



Ewald Sphere construction 
• Animation link 

 
 
 
 
 

• Second Link 
• Matching (1/dplane) with 

 
  
 leads to a diffraction spot 
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http://www.matter.org.uk/diffraction/geometry/ewald_sphere_construction_2D.htm
http://www.chembio.uoguelph.ca/educmat/chm729/recip/9surew.htm


Real Problem 1 
• Up till now, we have treated the problem 

as if there is only 1 identical point scatterer 
at each lattice site 

• If the scatterers are not points, but real 
macromolecules, then there is a “structure 
factor” accounting for interference within 
the macromolecule (like P(θ) in light 
scattering) 
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Real Problem II 
• We can show that 

 
 where ρ is the electron density in the 

macromolecule and s is the reciprocal 
vector: 

 
• Mathematically F is the Fourier Transform 

of ρ or F = FT[ρ] –  
• If we can invert this, we can find ρ: 

ρ = FT-1[F]  which gives us the structure 
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MASK = STRUCTURE = ρ(x) Diffraction Pattern = F(s) 

Holes of increasing size 

Several equally spaced holes 

Arrays of holes 

5 increasingly spaced holes 



Some FT’s 
 



Phase Problem 
• Unfortunately, what we measure is not F 

directly, but the intensity I where  
 

• But F = (amplitude)ei(phase)  and  
 

 so that we lose all the phase information 
and cannot do the inverse FT exactly 
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What to do? 
• We can measure: 

– Diffraction spot intensities 
– Unit cell dimensions 
– Symmetry group 

• We want to find out: 
– Location of each atom in unit cell 
– Type of atom and expected F 
– Phase associated with each atom 

 
 

 
 



Patterson Function 
• From measurements of I we can take its 

FT:  FT[I] = FT[|F|2] = FT[F(s)F*(s)] = P(r) 
= Patterson function – this can be 
calculated based on the x-ray picture 

• But – the convolution theorem says: 
 
 

• Convolution 

( ) [ ( )] [ ( )] ( ) ( )P r FT F s FT F s r rρ ρ∗= ⊗ = ⊗ −
 



Convolution of a duck with a lattice 



Convolution ideas 
Each atom is placed at 
each site of the unit cell 

The same set of 
spots comes from 
placing the 
inverse image at 
each site 

Single molecule per unit cell 

2 molecules/unit cell 

Number of spots = N2 where N 
= # atoms  - gets huge! 



Loss of information 

reconstruction 

Delete higher 
order diffraction 

Construct 
diffraction 
pattern 



Resolution of the Diffraction Duck 



 



How to Solve the Phase Problem 
• Several tricks used to help identify spots 

– Heavy atom method (if MW < 1000 or so) 
If the molecule has a heavy atom – it gives rise to lots of 

intensity and can be used to pick out those spots from 
Patterson from this atom – use this to help calculate 
amplitude and phase from this heavy atom – if no heavy 
atom present – can try to synthesize the molecule with an 
added specific heavy atom and then make a crystal of it. 

– Multiple Isomorphous Replacement (MIR) – 
• make several heavy atom derivative crystals and use these 

to solve the phase problem by taking difference Patterson’s – 
in general need at least 2 isomorphous replacements to 
solve a structure 



Great data 

Part of tetanus 
C protein – 
tyrosine residue 
showing ring 
hole at high 
resolution 



Fiber X-ray Diffraction 
• Some samples do not form crystals, but can be 

studied by x-ray diffraction if they can be drawn 
out into fibers – two types: small crystallites 
oriented parallel to each other (as in A-DNA) 
and non-crystalline fibers, with all 
macromolecules oriented in the same direction, 
as formed in a capillary tube, for example (as in 
B-DNA) 

• So, these samples need to be elongated – so 
they can be oriented by flow or other means (B-
field, etc.) 

• The fiber is put in the x-ray beam with its axis 
perpendicular to the beam 



Fiber diffraction patterns 
• Fiber diffraction patterns – 
 Left (A-DNA – oriented crystallites- showing 

spots); right (B-DNA fiber showing layer line 
structure due to helices – but without spots 
along layer lines because the helices are 
randomly oriented around the helix axis) 



Diffraction from a continuous helix 
• A continuous helix is defined by its pitch P and its 

diameter d – the helix is like a one-dimensional 
crystal (along z) – and scatters at a set of planes 
perpendicular to the x-axis – in reciprocal space, 
these planes are separated by 1/P and gives rise 
to a characteristic X pattern with the angle θ 
related to the helix diameter 

Angle inversely 
related to helix 
radius θ 

Spacing 
proportional to 
1/P 



Diffraction from a discrete helix 
• For a discrete helix with identical repeating “atom” the diffraction pattern is similar, 
with layer lines again ~1/P and an overall X pattern with angle ~ 1/d, but with 
additional structure – the helix is also described by the axial rise per atom (or 
residue) = p 

•The diffraction pattern spacing of X’s along the meridian is related to 1/p 

•Then the number of residues/turn of helix is given by the ratio of P/p 

•With different residues each has a “structure factor” that varies intensity 

p 
Pitch = P 

Spacing 
corresponds to 
1/p – with 10 
layer lines per 
this repeat we 
have 10 
residues per 
turn of helix 

meridian 



 X-ray diffraction photograph of a vertically oriented 
Na+ DNA fiber in the B conformation taken by Rosalind 

Franklin. 
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X-ray Diffraction Pattern of DNA Fiber 





DNA structure 
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