Basic Building Blocks: Proteins

- Largest variety of biomolecules
- Most of the weight of cells, aside from water
- Basic unit is amino acid
- Form of amino acid
- •Simplest is glycine with R = H
- All others are asymmetric two stereoisomers L & D with mainly L naturally occuring

Human Genome Project Facts

- Human DNA codes about 30,000 genes (vs. fruit flies:13,500 and C. elegans: 19,000)
- These genes represent only ~ 1% of DNA lots of coding for control & transcription factors
- Average human protein has ~450 amino acids
- One of the largest proteins is titin (27,000 amino acids in a single chain)

Protein Functions

- Motion & locomotion of cells/organism (contractile proteins)
- Catalysis of all biochemical reactions (enzymes)
- Structure of cells and extracellular matrix (e.g. collagens)
- Receptors for hormones/ signaling molecules
- Transcription factors
- Etc.

Example Protein (H-2K) - Structure

- This antigen displays many features of proteins
 - Two polypeptide chains
 - Longer heavy chain has 5 domains 3 extracellular, one transmembrane, and one cytoplasmic – it is called an integral membrane protein
 - Smaller polypeptide chain is attached to heavy chain by H bonds (no covalent bonds) – it is a peripheral membrane protein
 - The dark bars are disulfide bridges (S-S)
 - Two short branched sugars are on the left making this a glycoprotein (sugar + protein compex)
 - The view seen here does not show its real 3D arrangement

Look in PDB

Types of amino acids

- Classify aa by various criteria each has 3 letter or 1 letter code
- 3 have ring-structures important in fluorescence
- All are ampholytes (+/- charge depending on pH)

Amino Acids

Amino Acid Codes

Alanine	Ala	Α	Leucine	Leu	\mathbf{L}
Arginine	Arg	R	Lysine	Lys	K
Aspartate	Asp	D	Methionine	Met	Μ
Asparagine	Asn	Ν	Phenylalanine	Phe	F
Cysteine	Cys	С	Proline	Pro	Р
Glutamate	Glu	Е	Serine	Ser	S
Glutamine	Gln	Q	Threonine	Thr	Т
Glycine	Gly	G	Tryptophan	Trp	W
Histidine	His	Н	Tyrosine	Tyr	Y
Isoleucine	Ile	Ι	Valine	Val	\mathbf{V}

MCMP 304 8/27/03 19

Digression: pH ideas

- pH = -log[H+]
- Neutrality when [H⁺]=[OH⁻]=10⁻⁷ M
- Higher pH basic; lower acidic
- Simple idea: $H_2O \longrightarrow OH^- + H^+$
- Dissociation constant K

$$K = \frac{[H^+][OH^-]}{[H_2O]} = e^{-\Delta G/kT}$$

where G = free energy per mole of bond formation; with $[H_2O] = 55 \text{ M} \sim \text{constant}$ So K' = $[H^+][OH^-] = 10^{-14}$ and pK = -log K in general

pH and pK

- Each charged group has a pK
- For proteins, e.g.,
 - COOH → COO⁻ + H⁺ pK 2.34
 - $-NH_3^+ \longrightarrow NH_2 + H^+$ pK 9.69
 - R group dissociation also
 - If $pH > pK \rightarrow more basic form$
 - If $pH < pK \rightarrow more acidic form$
 - Different forms predominate at different pH polyelectrolyte

Example: Titration of alanine

- Different forms at different pH
- Alanine has $R = CH_3$
- pI = isoelectric point = pH at which neutral

Peptide bond

Amino acids link together to form a continuous linear chain = backbone of protein
 Formation of a Peptide Bond

Amino acid Amino acid G H (a) Dipeptide terminal Amide plane Carboxyl The peptide bond terminal is black Water molecule

Primary Structure

- With even only 10 a.a. long number of possible polypeptides (decamers) = 20¹⁰ = 10¹⁰x2¹⁰ ~ 10¹³
- Amino acid composition not sequence can be automatically determined by aa analyzer to give % composition
- General features of 1° structure:
 - Most polypeptide chains are 100 500 aa; smallest 25 100, largest 3000
 - Some proteins have more than 1 chain held together by weaker non-covalent bonds
 - Protein data bank on-line

Facts about 1° structure

- Wide variation in composition
- Certain aa are fairly rare (methionine, Tryptophan)
- Ala, Leu very common
- Many proteins contain other molecules, including carbohydrates, metal ions (Ca, Fe, Zn, Cu)

Metal Ions in Proteins

Secondary Structure (2°) of Proteins Backbone of protein chain has series of rotatable bonds. Two angles describe possible rotations of each peptide

 Rotations about these bonds lead to certain allowed structures – or stable conformations

Fig. 2.24. Dimensions of the peptide bond. T CONH—C α lie in a plane. The chain only has the C α -atoms around the angles ϕ (N—C α) and ψ

Ramachandran Diagram

A number of helices and β sheets are possible

α -helix + β -sheet

-Pairs of chains lying

side by side

More α -helix, β sheet, triple helix

All proteins consist of regions of 2nd structure w/ random coil connections

Harcourt, Brace & Company)

Prediction of structure

- Based on knowing aa sequence, we are able to predict α-helix, βsheet regions
- For example: residues 1-36 in histone have 12 + charges – able to bind to neg. charges on d-s DNA
- For example: glycophorin from human RB cells spans membrane from 73 – 95 non-polar region

Prediction of Structure II

Figure 2-13

Distribution of secondary structure types in adenylate kinase. Regions predicted by several different theoretical methods to be in β bends, β sheets, or α helices are shown. Actual secondary structure regions found by x-ray crystallography are indicated, as is the average predicted distribution considering the various theories jointly. The predictions were made before the crystal structure was known. [After G. E. Schultz et al., Nature 250:140 (1974).]

Protein Folding Problem

- Big Question is: If you know the primary sequence of aa can you predict the 3-D structure of a protein? [Protein-folding problem – one of challenges]
- Can occur spontaneously involves basic electrical interactions that we'll study soon
 - Co-valent bonds along backbone
 - H-bonds weaker, directional
 - Van der Waals non-specific attractive
 - Hydrophobic/ hydrophilic entropy driven forces

Tertiary Structure (3°)

 All proteins consist of 2° structure regions connected by random coil

Protein Domains

- Tertiary structure of proteins is built up from domains
- Each domain has a separate function to perform for example:
 - Binding a small ligand
 - Spanning the plasma membrane
 - Containing a catalytic site
 - DNA binding (transcription factors)
 - Providing a binding surface for another protein
- Often each domain is encoded by a separate exon in the gene encoding that protein – this correspondence is most likely to occur in recently-evolved proteins (exon shuffling idea to generate new proteins using established domains – like Lego pieces)

Fibrous Proteins

- Two major classes of proteins based on 3° Structure
 - Fibrous fiber-like, includes
 - Keratins in hair, horns, feathers, wool
 - Actin muscle thin filaments, cells
 - Collagen connective tissue

Often these are polymers made up from monomer subunits and form all α helices and/or all β sheets (e.g. silk)

Actin filament made from monomers

Globular Proteins

 Second class is <u>globular</u> – most enzymes, hormones, transport proteins – folded up structure

General Properties of 3° Structure

- Lowest energy states are most stable 3° structures
- 2. Charged residues are on surface or exposed clefts
- 3. Non-polar (hydrophobic) residues are internal
- 4. Nearly all possible H-bonds form

Quaternary (4°) Structure

- Multiple sub-units bound together noncovalently
- Canonical <u>example is hemoglobin</u>:

Helical Model for α -Carbons of Deoxy Hemoglobin

Red -- Beta subunits Yellow -- Alpha subunits Green -- Heme

Cooperative Binding by Hemoglobin

 Fe in the heme group binds oxygen – separately, each of 4 hemes binds O₂ as in myoglobin – 4 together bind O₂ cooperatively – Allosteric conformational change

TMV – 4° structure

Packing Density of Proteins

- How filled is volume of protein?
- Quantitative measure = packing density =

 $PD = \frac{\text{volume enclosed by all van der Waals R}}{\text{total volume}}$

- For continuous solid PD = 1
- For close packed spheres PD = 0.74
- For close packed cylinders PD = 0.91
- For ribonuclease S, PD = 0.75

Two Other Classes of Biomolecules-Polysaccharides + Lipids

- Polysaccharides (carbohydrates)
 - Monosaccharide eg glucose
 - Disaccharide eg lactose
 - Polymers of sugars M ~ 10⁴ -

Polysaccharides - con't

- Glucose can polymerize into 3 types of polymers
 - Starch- polymers of glucose metabolic

- Glycogen- ditto, but with more shorter
 branching –also metabolic- stores glucose
- Cellulose most prevalent biomolecule structural

Lipids

- Very diverse family all insoluble in water/ rich in hydrocarbons
- Includes fatty acids, steroids, phosphoglycerides/phos pholipids in membranes
- Polar head group = fatty acid tail with 12 – 24 C's in tail

bilayer

Vesicle (unilamellar)

micelle

