Basic Building Blocks: Proteins

- Largest variety of biomolecules
- Most of the weight of cells, aside from water
- Basic unit is amino acid
- Form of amino acid
- Simplest is glycine

$$
\text { with } \mathrm{R}=\mathrm{H}
$$

- All others are asymmetric two stereoisomers L \& D
with mainly L naturally occuring

Human Genome Project Facts

- Human DNA codes about 30,000 genes (vs. fruit flies:13,500 and C. elegans: 19,000)
- These genes represent only $\sim 1 \%$ of DNA lots of coding for control \& transcription factors
- Average human protein has ~450 amino acids
- One of the largest proteins is titin (27,000 amino acids in a single chain)

Protein Functions

- Motion \& locomotion of cells/organism (contractile proteins)
- Catalysis of all biochemical reactions (enzymes)
- Structure of cells and extracellular matrix (e.g. collagens)
- Receptors for hormones/ signaling molecules
- Transcription factors
- Etc.

Example Protein (H-2K) - Structure

- This antigen displays many features of proteins
- Two polypeptide chains
- Longer heavy chain has 5 domains 3 extracellular, one transmembrane, and one cytoplasmic - it is called an integral membrane protein
- Smaller polypeptide chain is attached to heavy chain by H bonds (no covalent bonds) - it is a peripheral membrane protein
- The dark bars are disulfide bridges (S-S)
- Two short branched sugars are on the left making this a glycoprotein (sugar + protein compex)
The view seen here does not show its real 3D arrangement
Look in PDB

Types of amino acids

- Classify aa by various criteria - each has 3 letter or 1 letter code
- 3 have ring-structures - important in fluorescence
- All are ampholytes (+/- charge depending on pH)

Amino Acids

Amino Acid Codes

Alanine	Ala	A	Leucine	Leu	L
Arginine	Arg	R	Lysine	Lys	K
Aspartate	Asp	D	Methionine	Met	M
Asparagine	Asn	N	Phenylalanine	Phe	F
Cysteine	Cys	C	Proline	Pro	P
Glutamate	Glu	E	Serine	Ser	S
Glutamine	Gln	Q	Threonine	Thr	T
Glycine	Gly	G	Tryptophan	Trp	W
Histidine	His	H	Tyrosine	Tyr	Y
Isoleucine	Ile	I	Valine	Val	V

Digression: pH ideas

- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- Neutrality when $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$
- Higher pH - basic; lower - acidic
- Simple idea: $\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{OH}^{-}+\mathrm{H}^{+}$
- Dissociation constant K

$$
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}=e^{-\Delta G / k T}
$$

where $\mathrm{G}=$ free energy per mole of bond formation; with $\left[\mathrm{H}_{2} \mathrm{O}\right]=55 \mathrm{M} \sim$ constant
So $\mathrm{K}^{\prime}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$ and $\mathrm{pK}=-\log \mathrm{K}$ in general

pH and pK

- Each charged group has a pK
- For proteins, e.g.,
$\begin{array}{ll}-\mathrm{COOH} \longrightarrow \mathrm{COO}^{-}+\mathrm{H}^{+} & \text {pK } 2.34 \\ -\mathrm{NH}_{3}{ }^{+} \longrightarrow \mathrm{NH}_{2}+\mathrm{H}^{+} & \text {pK } 9.69\end{array}$
-R group dissociation also
If $\mathrm{pH}>\mathrm{pK} \rightarrow$ more basic form
If $\mathrm{pH}<\mathrm{pK} \rightarrow$ more acidic form
Different forms predominate at different pH polyelectrolyte

Example: Titration of alanine

- Different forms at different pH
- Alanine has $\mathrm{R}=\mathrm{CH}_{3}$
- $\mathrm{pl}=$ isoelectric point = pH at which neutral

Peptide bond

- Amino acids link together to form a continuous linear chain = backbone of protein

Formation of a Peptide Bond

Primary Structure

- With even only 10 a.a. long - number of possible polypeptides $($ decamers $)=20^{10}=10^{10} \times 2^{10} \sim$ 10^{13}
- Amino acid composition - not sequence - can be automatically determined by aa analyzer to give \% composition
- General features of 1° structure:
- Most polypeptide chains are 100-500 aa; smallest 25 - 100, largest 3000
- Some proteins have more than 1 chain - held together by weaker non-covalent bonds
- Protein data bank - on-line

Facts about 1° structure

- Wide variation in composition
- Certain aa are fairly rare (methionine, Tryptophan)
- Ala, Leu very common
- Many proteins contain
other molecules, including carbohydrates, metal ions (Ca, Fe, Zn, Cu)

Metal Ions in Proteins

carboxy peptidase

Secondary Structure $\left(2^{\circ}\right)$ of Proteins

- Backbone of protein chain has series of rotatable bonds. Two angles describe possible rotations of each peptide
- Rotations about these bonds lead to certain allowed structures - or stable conformations

Fig. 2.24. Dimensions of the peptide bond. T $\mathrm{CONH}-\mathrm{Ca}$ lie in a plane. The chain only has the

Ramachandran Diagram

- A number of helices and β sheets are possible

Table 2.5. Structural parameters of important polypeptide conformations

α-helix	3_{10}-helix	27 -band	Poly- prolin helix	Antiparallel β-pleated sheet structure	
	$132^{\circ}\left(113^{\circ}\right)$	$131^{\circ}\left(106^{\circ}\right)$	105°	103°	40°
n	$123^{\circ}\left(136^{\circ}\right)$	$154^{\circ}\left(176^{\circ}\right)$	250°	326°	215°
$d[\mathrm{~nm}]$	3.61	3.00	2.00	-3.00	2.00
$p[\mathrm{~nm}]$	5.41	2.00	2.80	3.12	3.47

$n=$ Number of repeating units per helix turn. $d=$ The raise along the helix axis per repeating unit. $p=$ Pitch of a helix.

α-helix $+\beta$-sheet

-Pairs of chains lying
 side by sid

- Stabilized by H bonds
- R groups outside
-NH and $-\mathrm{C}=\mathrm{O}$

4 aa apart pointing

Fig. 2.30a, b. Representation of a the parallel, and b the antiparallel pleated-sheet structure. [After Pauling, L. and Corey, R. B.: Proc. Natl. Acad. Sci. U.S. 37, 729 (1951)]

More α-helix, β sheet, triple helix

Harcourt, Brace \& Company)

All proteins consist of regions of $2^{\text {nd }}$ structure wl random coil connections

Prediction of structure

- Based on knowing aa sequence, we are able to predict α-helix, β sheet regions
- For example: residues 1-36 in histone have $12+$ charges - able to bind to neg. charges on d-s DNA
- For example: glycophorin from human RB cells spans membrane from 73 95 non-polar region

Prediction of Structure II

Distribution of secondary structure types in adenylate kinase. Regions predicted by several different theoretical methods to be in β bends, β sheets, or α helices are shown. Actual secondary structure regions found by x-ray crystallography are indicated, as is the average predicted distribution considering the various theories jointly. The predictions were made before the crystal structure was known. [After G. E. Schultz et al., Nature 250:140 (1974).]

Protein Folding Problem

- Big Question is: If you know the primary sequence of aa can you predict the 3-D structure of a protein? [Protein-folding problem - one of challenges]
- Can occur spontaneously - involves basic electrical interactions that we'll study soon
- Co-valent bonds along backbone
- H-bonds - weaker, directional
- Van der Waals - non-specific attractive
- Hydrophobic/ hydrophilic - entropy driven forces

Tertiary Structure (3°)

- All proteins consist of 2° structure regions connected by random coil

- Human ICE-protease

Interleukin-1ß-converting enzyme

Protein Domains

- Tertiary structure of proteins is built up from domains
- Each domain has a separate function to perform - for example:
- Binding a small ligand
- Spanning the plasma membrane
- Containing a catalytic site
- DNA binding (transcription factors)
- Providing a binding surface for another protein
- Often each domain is encoded by a separate exon in the gene encoding that protein - this correspondence is most likely to occur in recently-evolved proteins (exon shuffling idea to generate new proteins using established domains - like Lego pieces)

Fibrous Proteins

- Two major classes of proteins based on 3° Structure
- Fibrous - fiber-like, includes
- Keratins - in hair, horns, feathers, wool
- Actin - muscle thin filaments, cells
- Collagen - connective tissue Often these are polymers made up from monomer subunits and form all α helices and/or all β sheets (e.g. silk)

Actin filament made from monomers

Globular Proteins

- Second class is globular - most enzymes, hormones, transport proteins - folded up structure

Myohemerythrin

Prealbumin

Immunogiobulin. V_{2} domain

Pyruvate kinase, domain 1

General Properties of 3° Structure

1. Lowest energy states are most stable 3° structures
2. Charged residues are on surface or exposed clefts
3. Non-polar (hydrophobic) residues are internal
4. Nearly all possible H-bonds form

Quaternary (4$)$ Structure

- Multiple sub-units bound together noncovalently
- Canonical example is hemoglobin:

Cooperative Binding by Hemoglobin

- Fe in the heme group binds oxygen - separately, each of 4 hemes binds O_{2} as in myoglobin - 4 together bind O_{2} cooperatively - Allosteric conformational change

TMV - 4^{0} structure

Packing Density of Proteins

- How filled is volume of protein?
- Quantitative measure = packing density =

$$
P D=\frac{\text { volume enclosed by all van der Waals } \mathrm{R}}{\text { total volume }}
$$

- For continuous solid PD = 1
- For close packed spheres PD $=0.74$
- For close packed cylinders PD $=0.91$
- For ribonuclease S, PD $=0.75$

Two Other Classes of BiomoleculesPolysaccharides + Lipids

- Polysaccharides (carbohydrates)
- Monosaccharide - eg glucose
- Disaccharide - eg lactose
- Polymers of sugars - M ~ 10^{4} - "

- Polymers of sugars - M

Polysaccharides - con't

- Glucose can polymerize into 3 types of polymers
- Starch- polymers of glucose - metabolic

- Glycogen- ditto, but with more shorter branching -also metabolic- stores glucose
- Cellulose - most prevalent biomolecule structural

Lipids

- Very diverse family - all insoluble in water/ rich in hydrocarbons
- Includes fatty acids, steroids, phosphoglycerides/phos pholipids in membranes
- Polar head group = fatty acid tail with $12-24$ C's in tail

bilayer

micelle

Vesicle (unilamellar)

