Physics 200 Molecular Biophysics Fall 2013

Professor Jay Newman Office/Lab: N315/N008 ext. 6506 e-mail: newmanj@union.edu Office Hours: TBA Text: Methods in Molecular Biophysics, by Serdyuk, Zaccai and Zaccai (SZ²) Course Web Site: <u>minerva.union.edu/newmanj/Physics200</u>

The course will cover material on the basic structure and function of biomolecules and will include a variety of physical techniques used to study these systems. We will cover most of the topics in SZ^2 , skipping a few (for example, we'll omit the chapter on thermodynamics). An outline of the course is given below.

We will run the class partly as a seminar in which you will present material from the text book in class four times, the presentations counting 10% of your final grade each. Readings and homework will be assigned, collected and graded and will count about 30% of the grade. The balance of the grade, 30%, will be based on a major term paper, which will be due the last day of classes, and a class presentation based on the paper. There will be no final exam.

The web site will have all the slides used in class in both Powerpoint and pdf formats (powerpoints used in student presentations will also be posted). Note that this course gives WAC credit. Aside from the research paper, for which you will do a draft and a final version, most homework also will involve some writing that will be graded based on your use of English, your writing style, as well as the science content.

1. Introduction to the Study of Biomolecules: What is Biophysics?

2. The Basic Building Blocks (Part A2 expanded)

Proteins, nucleic acids, lipids, etc...

3. <u>Molecular Interactions</u> (Not in text)

Basic ideas on electrical and hydrodynamic interactions of biomolecules

4. Biological Structure and Function: Techniques used in Biophysics

Examples of case studies using a variety of physical techniques, including:

- **Mass spectrometry (Part B)
- Hydrodynamics:
 - 1. Basic ideas (Part D1-2)
 - 2. Viscosity and Diffusion (Part D9, D3)
 - 3. **Sedimentation (Part D4)
 - 4. **Electrophoresis (Part D5)
 - 5. Dynamic Light Scattering (Part D10)
 - 6. **Fluorescence methods (Parts D8, D11)
- Chromatography (Not in text)
- **Microscopy, including new microscopies (Part F1-5)
- *Electron microscopy (Part H1-2)

- *Optical spectroscopy (Part E1)
 Nuclear magnetic resonance (Part J1-3 expanded)
- X-ray diffraction (Part G1,3 expanded)
- * = student presentations

Tentative Schedule of Topics:

Week	Dates	Monday	Wednesday	Friday
1	September		Introduction,	Structure/ DNA &
	9		Structure of	Proteins
			Biomolecules	
2	September	DNA and proteins	Biomolecules con't,	Biomolecules con't,
	16		and interactions	and interactions
3	September	TBD	Intro to	*Mass
	23		Hydrodynamics	Spectrometry
4	September	Viscosity and	*Sedimentation	Dynamic Light
	30	Diffusion		Scattering
5	October 7	*Electrophoresis	Intro to	*Fluorescence
			Fluorescence, and	Correlation
			*Fluorescence	Spectroscopy
			Depolarization	
			Paper Topics Due	
6	October 14	Chromatography	*Microscopy1	*Microscopy2
7	October 21	*Electron	Intro to	*Optical
		Microscopy	Spectroscopy	Spectroscopy
8	October 28	TBD	NMR	NMR con't
			Paper Drafts Due	
9	November	NMR con't	X-ray diffraction	X-ray diffraction
	4			con't
10	November	X-ray diffraction	Finish loose ends	Class
	11	con't		Presentations
	November	Class Presentations		
	18	Final Papers Due		

Presentation Topics:				
Mass Spectrometry	two parts			
Sedimentation	two parts			
Electrophoresis	two parts			
Fluorescence Depolarization	one presentation			
Fluorescence Correlation Spectroscopy	one presentation			
Microscopy I and II	two parts			
Electron Microscopy	one presentation			
Optical Spectroscopy	one presentation			