1. a. Initial steady-state equilibrium levels are:

\[k = 68.2338, \ h = 34.1169, \ y_{\text{pcapita}} = 10.2351 \]

b. When \(s_K \) increases from 0.20 to 0.25 and all else remain at their initial levels, the new steady-state equilibrium levels are:

\[k = 100.83, \ h = 40.3322, \ y_{\text{pcapita}} = 12.0997 \]

Percentage change in \(y \) = 18.21%

The intuition is as follows. An increase in the physical capital accumulation rate \(s_K \) implies that at the initial level of \(k \), investment in \(k \) will be higher than the depreciation in \(k \). In other words, \(s_KA_k^\alpha h^\beta \) will be larger than \(\delta k \). Equation (5) indicates that this leads to physical capital accumulation and hence per capita output increases.

Then the question is how come the level of human capital per worker \(h \) is also increasing? Observe that when physical capital accumulation takes place (i.e. when \(k \) increases) \(s_HA_k^\alpha h^\beta \) also increases. This implies that at the initial level of \(h \), investment in \(h \) will be larger than the depreciation in \(h \). In other words, \(s_HA_k^\alpha h^\beta \) is larger than \(\delta h \). Equation (6) indicates that this leads to human capital accumulation and hence per capita output increases.

The arguments above imply that there will be a transitory period in which both human and physical capital accumulation will take place. This will give rise to a gradual increase in the level of per capita income. Over time, as the stocks of physical and human capital increase, diminishing returns will start kicking in. Eventually a steady-state equilibrium will be reached with \(\dot{h} = \dot{k} = 0 \). At this point, per capita income growth will come to a halt and \(y \) will reach its new steady-state level.

c. When \(s_H \) increases from 0.10 to 0.20 and all else remain at their initial levels the new steady-state equilibrium levels are:

\[k = 114.755, \ h = 114.755, \ y_{\text{pcapita}} = 17.2133 \]

Percentage change in \(y \) = 68.17 %

The intuition is as follows. An increase in the human capital accumulation rate \(s_H \) implies that at the initial level of \(h \), investment in \(h \) will be higher than the depreciation in \(h \). In other words, \(s_HA_k^\alpha h^\beta \) will be larger than \(\delta h \). Equation (6) indicates that this leads to human capital accumulation and hence per capita output increases.

Then the question is how come the level of physical capital per worker \(k \) is also increasing? Observe that when human capital accumulation takes place (i.e. when \(h \) increases) \(s_KA_k^\alpha h^\beta \) also increases. This implies that at the initial level of \(k \), investment in \(k \) will be larger than the depreciation in \(k \). In other words, \(s_KA_k^\alpha h^\beta \) will be larger than \(\delta k \). Equation (5) indicates that this leads to human capital accumulation and hence per capita output increases.
The arguments above imply that there will be a transitory period in which both human and physical capital accumulation will take place. This will give rise to a gradual increase in the level of per capita income. Over time, as the stocks of physical and human capital increase, diminishing returns will start kicking in. Eventually a steady-state equilibrium will be reached with $\dot{h} = \dot{k} = 0$. At this point, per capita income growth will come to a halt and y will reach its new steady-state level.

d. When α increases from 0.30 to 0.40 and all else remain at their initial levels, the new steady-state equilibrium levels are:

$$k = 278.825, \quad h = 139.413, \quad y_{\text{pcapita}} = 41.8238$$

Percentage change in $y = 308.63\%$

The intuition is as follows. An increase in α implies that productivity of capital increases. This implies that at the initial level of k, investment in k will be higher than the depreciation in k. In other words, $s_k A_k^\alpha h^\beta$ will be larger than δk. Equation (5) indicates that this leads to physical capital accumulation and hence per capita output increases.

Similarly the increase in α implies that at the initial level of h, investment in h will be larger than the depreciation in h. In other words, $s_h A_k^\alpha h^\beta$ is larger than δh. Equation (6) indicates that this leads to human capital accumulation. Thus h increases and per capita output also increases.

The arguments above imply that there will be a transitory period in which both human and physical capital accumulation will take place. This will give rise to a gradual increase in the level of per capita income. Over time, as the stocks of physical and human capital increase, diminishing returns will start kicking in. Eventually a steady-state equilibrium will be reached with $\dot{h} = \dot{k} = 0$. At this point, per capita income growth will come to a halt and y will reach its new steady-state level.

2. ΔBANK = 0.83 – 0.56 = 0.27

a. To calculate the change in GYP, we use the coefficient estimate corresponding to BANK in the regression where the dependent variable is GYP. Hence, we need to use: 0.032.

The change in GYP is then given by:

$$\Delta \text{GYP} = \text{(the coefficient estimate for BANK)} \times \Delta \text{BANK}$$

$$= 0.032 \times 0.27 = 0.00864$$

b. With growth rate of 2% and $Y_{1960} = $100, the level of income in 1990 simply equals:

$$Y_{90} = (1 + 0.02)^{30} \times 100 = 181.1362$$

c. The new growth rate will be equal to 0.02 + ΔGYP = 0.02864

The predicted level of income with the higher growth rate is then equal to:

$$Y_{90} = (1 + 0.02864)^{30} \times 100 = 233.29$$

Hence, with the financial development the income per capita level will be 28.79% higher than would otherwise be.