| ВМЕ | E/ECE 386 EXAM 1 (W20) NA | ME: | |---------------|--|--| | 4 pr | roblems for 100 pts | | | Prol | blem #1: Short Answers (25 pts) | | | (a) <u>St</u> | train Gauge (2 pts): Constantan is an alloy of which | two metallic elements? | | ` , | rue or False (2 pts): An instrumentation amplifier sh | ould have high input impedance and high common- | | mo | node gain. If you choose false, explain why. | | | (c) <u>Th</u> | <u>hermistor (2 pts)</u> : What is a common material and s | ign of tempco (positive or negative) of a thermistor? | | . , | hermocouple (2 pts): Briefly explain the purpose of crobe. | cold conjunction compensation in a thermocouple | | | rue or False (2 pts): The output of a thermopile deteemperature and T _{AMB} is the ambient temperature. If y | ctor depends on $(T_{OBJ}-T_{AMB})^4$, where T_{OBJ} is the object you choose false, explain why. | | (f) | ECG electrodes (3 pts): What is the most common type of ECG electrode, and what chemical reactions occur to allow current to flow out of the body? | |-----|---| | (g) | Action Potential (3 pts): The action potential of a nerve involves a travelling repolarization (inward rush of Krypton atoms) followed by a travelling depolarization (outward rush of calcium ions). Make corrections, wherever necessary, to the previous statement about the action potential in a nerve cell. | | (h) | ECG (3 pts): Explain the positions of the lead vectors in 12-lead ECG. | | (i) | ECG (3 pts): Choose true or false for each of the following statements. If you choose false, then provide the correct statement. (i) The natural pacemaker of the heart is the Kirchhoff Current (KC) node. (ii) In the cardiac cycle, the right atrium and left ventricle contract together, followed by the left atrium and right ventricle contracting together. (iii) The T-wave corresponds to atrial repolarization. | | (j) | EMG (3 pts): Explain the smallest neuromuscular unit that can be activated and also how these units are involved in high muscle activity. | ## Problem #2: Load Cell (25 pts) You are asked to help design a materials testing system that can both compress and stretch a sample. The customer wants to measure a maximum load of +3 kN (compress) and -3 kN (stretch) with a sensitivity of 10 N. The load cell has RO = 1.2 mV/V @ 6 kN with an excitation voltage $V_S = +10V$. The amplifier has a differential gain $A_d = 200$ and an output noise voltage $V_N = 2$ mV_{RMS}. The amplifier is powered by +10V and GND, so you can assume the amplifier output is limited to 1V (min) and 9V (max). The ADC has 10 bits (0 to 5V). - a) The reference voltage can be either $V_{REF} = 2V$ or 3.5V. Which values (i.e. none, one of them, or both) satisfy all the design specs? You must clearly explain why a V_{REF} works or does not work. Show all work! - b) Suppose you find an ADC that operates from 0 to 10V with 14 bits. Explain whether this new ADC produces a system that satisfies all the design specs. Show all work! NOTE: You can use any relevant results from part (a) (i.e. you do not need to re-do all calculations). | (extra sheet for work) | | | | |---|--------|------------------|---| BME/ECE 386: Biomedical Instrumentation | Exam 1 | February 6, 2020 | 4 | ## **Problem #3: Temperature (25 pts)** You are asked to design a temperature measurement system that operates from 20 °C to 45 °C (e.g. for an egg incubator) with a sensitivity of 0.1 °C. You decide to use a thermistor R_T in a quarter bridge powered by +5V, as shown in the figure below. The instrumentation amplifier ($A_d = 2$) is powered by +5V and GND, so you can assume the amplifier output is limited to within 1V of each power supply. The reference voltage is $V_{REF} = 3V$. The ADC operates from 0 to 5V with 10 bits. The thermistor properties are the following: - $T = 20 \,^{\circ}C$: $R_T = 12.49 \text{ kohm}$ $\alpha = -4.51 \%$ °C $T = 45 \,^{\circ}C$: $R_T = 4.37 \text{ kohm}$ α = -3.91 %/°C + 5V + 5V 5.6K R **Inst Amp ADC** 7.5K R_T -□ **V**REF **GND GND** - a) You must choose between a bridge resistor R = 3.3 kohm or 4.7 kohm. Is an operating temperature range of 20 °C to 45 °C feasible with one, neither, or either resistor value? **If you rule out a resistor, you must clearly explain why.** - b) Suppose the amplifier has an output noise voltage of $V_N = 1$ mV_{RMS}. We can ignore self-heating if the temperature rise is less than the sensitivity at T = 20 °C. Can we ignore self-heating? Assume a dissipation factor $\delta = 7$ mW/°C. Show all work! | BME/ECE 386: Biomedical Instrumentation | Exam 1 | February 6, 2020 | 6 | |---|--------|------------------|---| (extra sheet for work) | | | | | | | | | ## Problem #4: ECG Amplifier (25 pts) Consider an ECG system where the input PQRST waveform has a 1.5 mV amplitude R-wave. The patient's heart rate is 90 beats per minute. The patient's breathing motion also produces an input differential voltage described by a 20 mV peak-to-peak, 0.25 Hz sine wave. Power line interference produces a 3V peak-to-peak, 60 Hz common mode voltage. The instrumentation amplifier has a differential gain $A_d = 20$, CMRR = 85 dB, and $V_{REF} = 1V$. - a) Compute and sketch the instrumentation amplifier output over a 4 second interval. Label important features! - b) After the instrumentation amplifier, we want a circuit that blocks DC. Use the Golden Rules to show that the op amp output is: we sto show that the op amp output is: $$\frac{V_{out}}{V_{in}} = \frac{jf/f_C}{1+jf/f_C}$$ arly define fc! NOTE: Make sure to clearly define f_c! c) Let us assume that the circuit from Part (b) passes a signal frequency when $|V_{OUT}/V_{IN}| > 0.9$. Let your ECG signal have frequency content that spans from 2 to 100 Hz. Suppose C = 0.33 uF. The available resistor values are R = 100 kohm, 220 kohm, 560 kohm, 820 kohm, and 1 Mohm. Which is the minimum acceptable value? Show all work! | (extra sheet for work) | | | | |---|--------|------------------|---| BME/ECE 386: Biomedical Instrumentation | Exam 1 | February 6, 2020 | 8 | | (extra sheet for work) | | | | |---|--------|------------------|---| BME/ECE 386: Biomedical Instrumentation | Exam 1 | February 6, 2020 | 9 |