
BME/ECE 386 Lab 2 Temperature

1

Lab 2 – Temperature Measurement System

GOALS

1) Build and test a thermistor circuit.

2) Write an Arduino program to acquire and send voltage data to a computer using the serial port.

3) Write a MATLAB program to:

a. Read data from the serial port.

b. Process the raw data into temperature.

c. Display a plot of temperature vs time.

4) Perform some fun experiments with your temperature measurement system!

GENERAL GUIDELINES

1) Each student must build his/her own circuit.

2) Due to the limited number of test stations, some students need to pair up and share the test equipment.

3) Students are encouraged to help each other. Of course, Buma will be around to provide assistance as well.

4) Ask questions! The more questions you ask, the more you learn!

REQUIRED MATERIALS

 Lab kit + power supply + oscilloscope + test probes

 Arduino Uno + USB cable + computer with Arduino IDE and MATLAB

 AD620 instrumentation amplifier (one)

 1.0 kohm (brown/black/red) resistors (two)

 10 kohm thermistor (comes with a long cable)

 10 kohm resistors (brown/black/orange) (three)

 100 kohm resistor (brown/black/yellow) (one)

LAB ACTIVITIES (4 PARTS)

1) Set up temperature measurement hardware.

2) Develop the Arduino data acquisition program.

3) Develop the MATLAB data processing and display program.

4) Perform some experiments with your awesome temperature measurement system.

Fig. 1: Thermistor (Vishay BC Components).

BME/ECE 386 Lab 2 Temperature

2

INTRODUCTION

In this lab, you will develop a temperature measurement system. A system block diagram is shown in Fig. 2. Here’s
how it works:

1) The thermistor (in a quarter bridge) converts temperature to a voltage signal.

2) The instrumentation amplifier increases the signal amplitude.

3) The amplifier output is recorded by the Arduino and voltage data is sent to the computer.

4) The computer processes the data (using MATLAB) to produce a plot of temperature versus time.

Fig. 2: Overall temperature measurement system.

PART 1: THERMISTOR CIRCUIT

The thermistor circuit is shown in Fig. 3.

 Task 1a: Build the quarter bridge circuit and instrumentation amplifier (Fig. 3).

o Keep your wiring neat! You can consult Buma’s (or a neighbor’s) breadboard for guidance.

 You can re-use the AD620 chip and other components from Lab 1.

o Properly color code your wiring!

 RED = +5V

 BLACK = GND

 YELLOW = other

o The thermistor cable has two wires that plug into the board – it doesn’t matter which wire goes to power.

BME/ECE 386 Lab 2 Temperature

3

 Task 1b: Test the circuit.

o Use the oscilloscope to measure the output voltage at Pin 6 of the instrumentation amplifier.

 Turn on the scope, then press “Force Trigger” to enable local (e.g. Front Panel) control

 Press “Default Setup” to reset the scope

 Make sure both the scope and probe are set to “1X”

 Adjust the scope’s vertical setting to 1V/div – the trace should be near 2V.

o Zoom in on the trace.

 First, center the trace in the middle of your screen (use the small knob to scroll down).

 Next, zoom in by changing the vertical setting to 500 mV/div.

 Finally, squeeze the thermistor between your thumb and index finger – the voltage should
increase by roughly 200 mV or so. When you let go the voltage should sloooowly return to its
original value.

 If you have cold fingers and cannot see a voltage change, you can either:

 Do about 386 jumping jacks to warm up your body.

 Ask a classmate with hotter fingers to test your circuit.

 (End of Part 1)

Fig. 3: Schematic for thermistor circuit. Remember to color‐code your wiring!

BME/ECE 386 Lab 2 Temperature

4

PART 2: ARDUINO

For this lab, the Arduino will record Vmeas and send it to the PC. Unlike Lab 1, this lab will involve more
communication between the Arduino board and the PC. This communication is needed to minimize any lost data
during transmission. An outline of the Arduino code is shown below:

(a) Setup() routine

o Initialize the serial port

o Send message to PC

(b) Loop() routine

o Wait for message from PC

o If PC requests data,

 Record ADC output

 Compute Vmeas

 Send Vmeas to computer

 Wait 500 ms

 STEP 2a: Download and unzip the Arduino template.

o Go to the course website and download “Lab2_files.zip” to your desktop.

o Double-click on the zipped folder.

o Select “Extract all files” (near top of the window) to unzip the contents of the folder.

o Double-click the extracted “Lab2_Arduino” folder and open the template.

o You can consult the Lab1 handout or Google for help and/or examples using Arduino functions.

 STEP 2b: Write the setup() routine.

o Initialize the serial port using the Serial.begin command

 Replace the “???” with appropriate code.

 Use the Serial.begin command and set the data rate to 9600 bits per second.

 Don’t forget the semicolon at the end of each line!

o Send message to PC

 Use the Serial.println command to send the single letter “a”. Double quotes are important!

BME/ECE 386 Lab 2 Temperature

5

 STEP 2c: Declare variables for the loop() routine.

o The loop routine uses five variables. Declare these before the loop() routine. As shown in Fig. 4, Buma
wrote the first one for you (he is so kind ….). Replace any other ??? with appropriate code.

Data Type Name Value Purpose

char PCstatus Stores one byte of text data from the PC

int A0_PIN 0 Name of Analog Pin 0

int ADCoutput Stores the ADC output

float Vmeas Measured voltage

int T 500 Time between readings (ms)

 Don’t forget semicolons at the end of each line!

Fig. 4: Declare some variables before the loop() routine.

 STEP 2d: Write the loop() routine.

o Replace all the ??? so that your code looks like Fig. 5. Comments about the code.

 The Serial.available command checks if the serial port has received any data.

 The while loop repeats this process and stops when data has been received.

 The Serial.read command reads one byte of received data from the serial port.

 The Serial.read command reads one byte of received data and stores the value in PCstatus.

 If PCstatus is the character “y”, then we proceed to make a voltage measurement:

 Use the analogRead command to read the data from A0_PIN.

 Convert ADCoutput to Vmeas (see Lab1 handout if you forgot how to do this).

 Serial.println(Vmeas, 3) sends the Vmeas value (3 decimal places)

 Use the delay command to wait T seconds before the next sample acquisition.

BME/ECE 386 Lab 2 Temperature

6

Fig. 5: The loop() routine checks for a message from the PC and then makes a voltage measurement.

 STEP 2e: Upload your code and observe the Arduino output using the Serial Monitor on the computer.

o You should notice the letter “a” on the first line (Fig. 6a).

 Nothing else should be happening, since the Arduino has not received a “y” from the computer.

o Type in the letter “y” in the command line and press the Send button (see Fig. 6b).

 You should see a voltage value appear below the letter “a”.

 Your code works if a new voltage value appears every time you send “y” to the Arduino. Nice!

Fig. 6: (a) The Serial Monitor should only show the letter "a" when the Arduino code starts. (b) Typing in "y" and pressing "Send"
should cause the Arduino to record and send a voltage signal. Repeating this process results in new voltage values.

 STEP 2f: Connect your thermistor circuit to the Arduino board.

BME/ECE 386 Lab 2 Temperature

7

o We want the thermistor circuit to be directly powered by the Arduino board.

 First, TURN OFF and DISCONNECT the benchtop power supply from your breadboard.

 You can put away the banana cables since they won’t be needed anymore.

 Second, DISCONNECT the USB cable from your Arduino board.

 Third, use a RED wire to power your breadboard from the Arduino’s +5V output (see Fig. 7).

 It is OK to use a long wire (e.g. few inches long).

 Then use a BLACK wire to connect the breadboard ground to the “GND” pin of the Arduino.

 Finally, use a YELLOW wire to connect the amplifier output (Pin 6) to the “A0” pin of the
Arduino.

o Re-connect the USB cable to the Arduino and re-run your Arduino code.

 View the Serial Monitor to confirm that you get a fairly steady voltage (e.g. something like
the right side of Fig. 7).

o Close the Serial Monitor when you have confirmed that everything works OK.

Fig. 7: Disconnect the benchtop supply, then power your breadboard from the Arduino’s +5V output and GND. Pin 6 of the AD620 chip
is connected to A0 of the Arduino. It is perfectly OK to use long wires (e.g. few inches) for all three connections. When you re‐run your
Arduino code, the Serial Monitor should show a fairly constant voltage.

(End of Part 2)

BME/ECE 386 Lab 2 Temperature

8

PART 3: MATLAB WARM-UP EXERCISES

Now that we’ve acquired Vmeas using the Arduino, we need to process Vmeas and display a plot of temperature
on the computer. We’ll do this using MATLAB! Buma will assume that you know some MATLAB, but have no
experience using MATLAB to communicate with an external device.

 In the “Lab2_files” folder you recently downloaded from the course website, double-click on the
“Lab2_MATLAB.m” file.

EXERCISE 3.1

Our first MATLAB exercise is to receive a single voltage measurement from the Arduino. How to do this? Fig. 8
is the flow chart for the Exercise 3.1 MATLAB program.

Fig. 8: Flow chart of the MATLAB program for Exercise 3.1.

 STEP 3.1a: Replace any “???” in the template so that your code looks like Fig. 9. Comments about the code
are shown below:

o Creating the serial port connection:

 The serial command creates a “serial port object” that we will name serObj.

 Make sure the COM number is the same as in your Arduino code!

 We are using the set command to configure the data rate for 9600 bits per second.

 The serial connection is started by “opening” serObj using the fopen command.

 The disp command displays a message in the MATLAB Command Window.

o Waiting for the Arduino message:

 The variable ArduinoReady stores the message from the Arduino.

 We will initially assume ArduinoReady is the letter ‘n’.

 We are using a while loop to repeatedly check for a message from the Arduino.

 The loop keeps going as long as ArduinoReady is NOT equal to ‘a’.

 The fscanf command reads the received data contained in serObj.

 The %s option means that the message is a text string.

Create
serial port
connection

Wait for
Arduino

message

Request
Vmeas from

Arduino

Close the
serial

connection

BME/ECE 386 Lab 2 Temperature

9

Fig. 9: Your MATLABcode should look like this. Do NOT forget the semicolons!

o Requesting Vmeas from the Arduino:

 The fprintf command sends the letter ‘y’ to the Arduino via serObj.

 The %c option means that the message is a text character.

 The fscanf command reads the received data contained in serObj.

 The %f option means the data is a floating point number.

o Finishing up the process:

 The fclose command closes serObj, which terminates the serial port connection.

 STEP 3.1b: Save your program, then run it by clicking on the “Run” button (with green triangle) at the top of
the MATLAB window.

o The command window (bottom of MATLAB window) should look something like Fig. 10.

 If you get a “COM not available” error, it most likely means you did not use the correct COM
port number when using the serial command.

BME/ECE 386 Lab 2 Temperature

10

 If you get errors:

 First, manually close the serial object via the command line by doing the following:

o >> fclose(serObj)

o Why do this? When your program exits prematurely due to an error, it
leaves the serObj open. MATLAB does not like this and will prevent
further communication through the serial port. Highly annoying!

 In your program, make sure:

o You properly use semicolons.

o You properly use SINGLE quotes instead of double quotes. For example,
‘ %s ’ is correct while “ %s ” is wrong.

o Once your program works, look at the Arduino while you click the MATLAB Run button:

 The Arduino’s “L” LED should quickly blink a few times, followed by a quick flash of the
“Tx” and “Rx” LEDs.

Fig. 10: The command window (bottom of MATLAB window) should look like this. You’ve just read data from the Arduino Uno!

EXERCISE 3.2

Our next MATLAB exercise is to make a plot of Vmeas streamed from the Arduino. Fig. 11 shows the flow chart.

Fig. 11: Flow chart for the MATLAB program to plot Vmeas that is streamed from the Arduino.

Create
serial port
connection

Wait for
Arduino

message

Request
Vmeas

from
Arduino

Close the
serial

connection

Create
window for

plotting data

Update data
with new
Vmeas

Update the
plot with
new data

Repeat

BME/ECE 386 Lab 2 Temperature

11

 STEP 3.2a: The first two sections of the MATLAB program are identical to your Exercise 3.1 code. Insert a
new section of code, as shown in Fig. 12, just after the “ disp(‘Arduino is ready …’); ” line of code. This new
code will create the window for plotting data. Comments about the code are shown below:

o We first need to create a 1-D array of time values for plotting.

 The time vector t has a length of N = 50 samples.

 The time increment is dt = 0.5 seconds.

 The time vector is therefore [0, dt, 2dt, 3dt, . . . , 49dt] = [0, 1, 2, 3, . . . , N-1]dt

o We next create an array of voltage values.

 The voltage vector Vdata will initially be defined as a 1-D array of ones.

o The figure command creates a window, where we assign h as the figure “name”.

o The plot command plots t on the x-axis and Vdata on the y-axis.

o drawnow displays the plot immediately (this is necessary while the program is running).

o We want the program to STOP when the user clicks on the figure window. We can do this using
the ButtonDownFcn in MATLAB.

 The ButtonDownFcn is a function that does something when the user clicks on the figure.

 We use the set command to configure the ButtonDownFcn to do whatever we want.

 We define a variable q that is initially equal to 0.

 When the use clicks on figure h, we want ButtonDownFcn to make q = 1.

 Later in the code we’ll see how q = 1 causes a while loop to exit.

Fig. 12: This part of the code creates 1‐D arrays for time and voltage, displays a plot, and configures the “ButtonDownFcn” feature.

BME/ECE 386 Lab 2 Temperature

12

 STEP 3.2b: Now we need to implement a live feed of data from the Arduino! Replace all “???” with appropriate
code shown in Fig. 13. Comments about the code are shown below:

o The while loop keeps running as long as q is equal to 0.

o Requesting Vmeas from the Arduino:

 The fprintf command sends the letter ‘y’ to the Arduino via serObj.

 The %c option means that the message is a text character.

 The fscanf command reads the received data contained in serObj.

 The %f option means the data is a floating point number.

o We want the most recent Vmeas value to be the LAST element in the Vdata array.

 We shift the existing Vdata elements to the “left”.

 We then assign the last element in Vdata to be equal to Vmeas.

o Plotting the updated data:

 The plot command plots the updated Vdata as a function of t.

 The ylim command sets the y-axis limits of the plot.

 The drawnow command is necessary to display the updated plot immediately.

 We then assign the last element in Vdata to be equal to Vmeas.

o The last section of the program (“Finish up the process”) is the same as before.

Fig. 13: The data acquisition loop does two things: (1) request Vmeas from the Arduino (2) display an updated plot.

BME/ECE 386 Lab 2 Temperature

13

STEP 3.2c: Save your program, then run it by clicking
on the “Run” button (with green triangle) at the top of
the MATLAB window.

o If you get any errors, remember to manually
close the serial object via the command line:

 >> fclose(serObj)

o A plot should appear with a waveform that is
scrolling to the left. An example is shown in Fig.
14.

 When the program starts, the voltage
will quickly jump to roughly 2.4V or so.

 Pinching the thermistor causes the
voltage to increase.

 Releasing the thermistor causes the
voltage to drop.

o The live data stream keeps going until you
click the figure just outside the white plot area.

(End of Part 3)

PART 4: TEMPERATURE MEASUREMENT

OK, now it’s time to implement the temperature measurement system! Our MATLAB code should receive one
sample of Vmeas from the Arduino, convert Vmeas to RT, then use the Steinhart-Hart equation to compute
temperature Temp in degrees Celsius, and update a scrolling plot of Temp vs t.

 From PreLab 2, Vmeas is converted to RT using the following two equations:

𝑏𝑒𝑡𝑎 ൌ ሺ𝑉ொௌ െ 𝑉ோாிሻ/ሺ𝐴ௗ𝑉ௌሻ; 𝑅் ൌ ሺ10 𝑘𝑜ℎ𝑚ሻሺ0.5 െ 𝑏𝑒𝑡𝑎ሻ/ሺ0.5 𝑏𝑒𝑡𝑎ሻ;

 The extended Steinhart-Hart equation is given below (T is in Kelvin):

𝑇 ൌ 1/ ൬𝐴 𝐵 ∙ 𝑙𝑜𝑔 ቀ
ோ

ோమఱ
ቁ 𝐶 ቀlog ቀ

ோ

ோమఱ
ቁቁ

ଶ
 𝐷 ቀlog ቀ

ோ

ோమఱ
ቁቁ

ଷ
൰

o In MATLAB, the natural logarithm function is log (it is not ln).

o Both RT and R25 must have the same units (i.e. both are kohm)

o You want temperature in degrees Celsius, so you need to slightly modify the above equation!

Fig. 14: Example of streamed data from the Arduino. Click
OUTSIDE the white plot area to stop the trace!

BME/ECE 386 Lab 2 Temperature

14

 Task 4a: Using your Exercise 3.2 code as a starting point, modify your code to produce a live plot of
temperature. Comments about the code are shown below:

o You should replace Vdata (voltage vector) with Temp (temperature vector).

 In Exercise 3.2, we initially defined Vdata as an array of 1s (e.g. [1, 1, 1, …, 1]).

 When creating Temp, it should be initialized as an array of 25s (e.g. [25, 25, 25, …, 25]).

o It is a good idea to define any constants (e.g. Ad) before the data acquisition loop.

 It is fine to assume Ad = 1.494 and Vref = 2.5.

 Be careful with units! Since the equation for RT involves kohms, you should use R25 = 10.

 The Steinhart-Hart coefficients for the thermistor are:

 A = 3.354016e-3; B = 2.569850e-4; C = 2.620131e-6; D = 6.383091e-8;

 The y-axis limits of the temperature plot should be between 10 and 35 degrees Celsius.

o Due to the lack of a calibrated temperature source, we will not calibrate our system. Please do not be
too disappointed …

 Task 4b: When you run your code, a plot should appear
with a waveform that is scrolling to the left.

o If you get any errors, remember to manually close
the serial object via the command line:

 >> fclose(serObj)

o A successful example plot is shown in Fig. 15.

 Remember that the temperature is initially
assumed to be 25 °C.

 The actual temperature in Buma’s office
was around 22 °C, which explains the
sudden drop in the waveform.

 The temperature increased when
Buma pinched the thermistor.

 The temperature dropped when the thermistor was released.

 The acquisition was stopped by clicking OUTSIDE the white plot area of the figure.

 Task 4c: Record and save a “warm” plot with your thermometer.

o You can pinch the thermistor with your fingers or dip the thermistor tip into a cup of warm water.

 Task 4d: Record and save a “cold” plot (dip the thermistor tip into ice water) with your thermometer.

 Task 4e: Demo your awesome system to Buma!

(End of Lab 2)

Fig. 15: Example of streaming plot showing temperature
rise and fall versus time. Click OUTSIDE the white plot
area to stop the trace!

