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Abstract—A sine wave fitting procedure for characterizing
measurements of a periodic signal in the presence of additive noise
and an unknown time base distortion is presented. If the time base
distortion is modeled by a Fourier series, it suffers from the Gibbs
phenomenon (ringing) at the borders of the data record. Usually,
this is solved by ignoring data samples at the borders. The latter
is unacceptable for very short data records where measuring a
sample is (very) expensive and/or (very) time consuming. This
paper presents a solution that suppresses the ringing in the esti-
mated time base distortion without ignoring data samples at the
borders. The theory is illustrated on simulations and on real vessel
density in the wood of a mangrove tree from Kenya (Rhizophora
mucronata).

Index Terms—Accretion rate, dendrochronology, Gibbs phe-
nomenon, mangrove, ringing, time base distortion.

I. INTRODUCTION AND OUTLINE OF THE PROBLEM

HE estimation of a harmonic signal in the presence of ad-

ditive noise and an unknown time base distortion (TBD)
has been studied intensively in the literature [1]-[5]. Two dif-
ferent approaches can be distinguished. The first starts from a
single observation (data record) of the harmonic signal and uses
a parametric time base distortion model [1], [2], [5]. The second
uses several well-chosen observations of the harmonic signal
and a nonparametric time base distortion representation [3], [4].
In general, the first approach suffers from ringing at the borders
of the data record, which is not the case for the second approach.
In [2], the problem is solved by deleting samples at the borders.
This paper studies the estimation of a harmonic signal in the
presence of additive noise and a time base distortion, starting
from a (very) short data record, where measuring one sample is
(very) expensive and/or (very) time consuming.

Such measurements can, for example, be encountered in trop-
ical dendrochronology. Tropical tree species often lack annual
growth rings (see [6]). Furthermore, even in tree species that
display growth rings, ring width data, a measure for the pro-
ductivity of the tree, may not always provide environmental in-
formation [7]-[9]. However, detailed anatomical measurements
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of wood have the potential to give information about the past
environment in which the tree grew. For instance, changes in
vessel density and diameters (vessels are tube-like cells respon-
sible for the water transport from the roots to the leaves of a
plant) may reflect changes in environmental conditions (e.g.,
[9]-[11]). Detecting these changes is of major importance to
understand forest dynamics and to ensure a sustainable man-
agement of the forests.

In the study described in this paper, the vessel density in a
mangrove tree was measured manually by counting the vessels
employing a microscope, aided with image analysis software
(Analysis 3.0). Counting the density along a radial axis from
bark to pith takes about a full day of manual work (depending
on the size of the tree) [9]. Besides the cost and time, the data
record can be fairly short, therefore ignoring data in order to re-
duce ringing is clearly not satisfactory. Other data records suf-
fering from the same problems, e.g., time base distortions due
to changes in growth or accretion rate, include sclerosponges
[12], [14], speleothems [13], [15], corals [16]-[20], bivalves
[21], [22], sediments [23]-[25], and ice cores [26].

This paper proposes a sine wave fitting procedure that sup-
presses ringing of the estimated parametric time base distortion
model without data removal at the borders.

II. SAMPLING AND METHODOLOGY

A stem disc of the mangrove R. mucronata was collected in
November 1999 from Gazi Bay, Kenya (39.5°E, 4.4°8S), located
40 km south of Mombasa. The sample is now part of the xy-
larium of the Royal Museum for Central Africa (RMCA), Ter-
vuren, Belgium (Tervuren wood collection, accession number
Tw55891).

The rainfall along the Kenyan coast shows a bimodal distribu-
tion, which is locally expressed in terms of the long rains (from
April to July) and the short rains (from October to November),
with a mean annual precipitation of 1144 mm (1890-1985) [27].
The temperature ranges from 23.3 to 29.9 °C with a mean an-
nual temperature of 26.4 °C (1931-1990) [27].

The stem disc (Fig. 1) was air dried and its transversal section
sanded (grain 100 to 1200). Prior to measurements, the sample
was treated with white wasco-crayons, in order to enhance the
delimitation of vessel elements. The vessel density was mea-
sured directly on the polished stem disc, along a radial transect
from bark to pith in adjacent windows (Fig. 2). Window size
was set to 300 pum height and 2100 pm width. The number of
vessels in each area was counted at an optical magnification of
12 x using image analysis software (AnalySIS 3.0) and recalcu-
lated to the number of vessels per square millimeter.
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Fig. 1. Cross-section of a mangrove tree. The dark rings correspond to low
vessel density and the light rings correspond to high densities [36].

Fig. 2. Microscopic view of stem cross-section illustrating the vessels (white
ovals).

III. MODEL

A sine wave fitting procedure [28] is combined with the TBD
identification technique of [1] in order to identify the harmonic
content of the data. The signal model must describe the physical
signal as closely as possible. This reduces the modeling errors
and therefore increases the precision of the results. It is assumed
that the continuous-time signal model s(¢) for the measurements
is given by

h
Z [Af cos(kwt) + Agyp sin(kwt)] @)

where ¢ is the time variable, Ay and A, are the unknown am-
plitudes of the kth harmonic (k € {1,...,h}), and w is the un-
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known fundamental angular frequency. The analog signal s(t)
is sampled at the time instances

n = [n+g(n)]T; 2

where n € {0,...,N — 1}, with N the number of samples,
Ts = 1/fs the sample period, fs the sampling frequency, and
g(n) the deterministic, unknown TBD. The time instance ¢, is
the time the specimen took to grow the sampling distance. Vari-
ations in growth rate will consequently cause variations in the
sample moments, described by the value of the TBD g(n). In
order to characterize this TBD, parametric models are used. In
general the TBD can be expanded in any set of (orthogonal)
basis functions ¢;(n)

b
(n) = Big(n) 3)
where DB; are the unknown coefficients of the TBD
(@ € {1,...,b}). A good choice of basis functions will

limit the number of coefficients needed to describe the TBD.
Two orthogonal bases are discussed in this paper: the basis
of the orthonormal Legendre polynomials and the basis of
trigonometric functions.

If the time base distortion is reconstructed for a record where
an exponentially decreasing accretion rate (without much vari-
ation) is assumed, a polynomial model would probably perform
better. On the other hand, if the accretion rate is influenced by
climatological conditions, which vary mainly with a yearly peri-
odicity, a Fourier basis would probably perform better. Consid-
ering that we do not know in advance which effect will overrule
the other, both the polynomial and Fourier basis set are used.
Hiatuses (stops in growth) are unlikely to occur in mangrove
trees [9], but no additional constraints such as smoothness, con-
tinuity, etc., have been implemented in order to keep the number
of applications as wide as possible. On other occasions, when
accretion hiatuses are present (e.g., [29]), B-splines or other sets
can be more useful than the basis sets used in this paper.

A. Othonormal Legendre Polynomials

The orthonormal Legendre polynomials [30] have been
chosen in order to avoid numerical problems in the estimation
of the parameters. Note that the offset and the linear term are not
used. The reason for this is that the corresponding coefficients
cannot be identified uniquely: i) the offset in the TBD can be
rewritten as a linear phase shift (time delay) in the signal model
and ii) the coefficient of the linear term acts as a shift of the
fundamental frequency. To show this, suppose an offset a and
a linear trend SnT} in the TBD g(n) = a+ fnTs + h(n), with
h(n) the remaining part of the TBD. The argument in (1) can
be rewritten so that the offset and linear trend are replaced by a
change in the angular frequency and a linear phase shift

kw [nTs + g(n)Ts] = kw [nTs + oTs + fnTs + h(n)Ts]

= kw[1+0] [nTS+ %TS} +hw(aTs)
=kwy [nTs + h1(n)Ts] + (w) 4)

where ws is the shifted angular frequency, ¢ the phase shift, and
hi(n) the remaining TBD.
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Fig. 3. Conceptual illustration of the Gibbs phenomenon (ringing).
Measurement window (white rectangle), enlarged borders (gray rectangles),
modeled TBD (full line), and unknown TBD (dotted line).

B. Trigonometric Series and the Gibbs Phenomenon

The parametric representation of the TBD as a Fourier series
is given by

b/2

g9(n) =Y [Bicos(2mniT.) + Byyy o sin(2eniT.)] . (5)
=1

In the examples used in this paper, no prior knowledge of the
shape of the TBD is available, so the polynomial model may
intuitively be a more obvious choice to describe the unknown
TBD. Moreover, there is no reason why the TBD model should
be periodic. So, ringing will occur when (5) is used to approx-
imate a nonperiodic TBD.

In [2], it is proposed to use only a part of the complete
measurement period: some points near the borders are ignored
during the fit. This reduces ringing considerably. As was
pointed out, each measurement point is of high value, so drop-
ping measurements is not ideal. For that reason an alternative
is designed to reduce ringing in the TBD model: extra samples
are added at the borders. These extra samples will be ignored
in the final estimation of the model parameters but allow the
procedure to reduce ringing inside the measurement window.
Fig. 3(a) shows a TBD model, which is estimated in the initial
measurement window. Notice the Gibbs phenomenon, which
mainly acts near the borders. Fig. 3(b) shows the same TBD, but
this time some extra space is created outside the measurement
window. Because ringing occurs mainly at the borders, it is
exported mostly outside the measurement window. After the
model is matched, these extra borders and most of ringing are
dropped.
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IV. ESTIMATION OF THE MODEL PARAMETERS Ay, Bj, AND w

A. Definition of the Estimators

The parameters of the signal model and of the TBD model are
estimated simultaneously by minimizing a cost function with
respect to an extended parameter vector

L By)" (6)

including not only the signal parameters but also the TBD model
parameters. The optimal set of parameters in the least square
sense is given by

6= arg ngin Ks(). @)

The explicit expression of the cost function is

n=1

1 &
Ko = 3 Z ls(n)

h 2
—~ (AO + ) [Axsin(kdt,) + Axpn cos(kd)tn)])] ®)

k=1

where s(n) is the nth sample, ¢,, is defined in (2) and (3), and
Ay and Agyp are defined in (1). For the minimization of (8)
a Levenberg—Marquardt algorithm is preferred in order to im-
prove the convergence. Further, each row in the Jacobian was
scaled in order to improve the numerical conditioning. When the
polynomial or trigonometric model of the TBD with unchanged
borders is used, N=N , with N the number of samples, and
w = w, with w defined in (1); when samples are dropped near
each border N = Ng, with Ny = N — 2q the remaining number
of samples, and @ = w; when the borders are enlarged with ¢
samples at each border, N=Nado = w-N /N, with
N, = N + 2q. We will refer to the model where samples are
dropped as the reduced model and to the model with enlarged
borders as the enlarged model. Notice that if the fundamental
frequency in the reduced model were rescaled, as is done in the
enlarged model, ringing would appear again.

B. Starting Point Problem

The identification consists of a sequence of four steps which
are only summarized in this paper. First, we will discuss how the
set of parameters is estimated when the measurement window is
not altered (model with N=Nand® = w), i.e., we will focus
on the polynomial and the trigonometric model of the TBD,
where the borders are not altered. The estimation of the initial
values is done in precisely the same way as in [2].

1) A nonparametric estimation of the TBD is performed:
a TBD acts as a phase modulation, characterized in the
spectrum by the lines appearing around the harmonics.
The TBD can be isolated by employing a frequency
window around the first harmonic in order to cut out
an estimate of its spectrum, G. The calculation of the
estimate can be done by shifting the spectrum to dc and
then by calculating the inverse Fourier transform.
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2) The initial values of the coefficients are generated by
matching the proposed model to this nonparametric
estimate of the TBD.

3) Also, the sampling moments are calculated using (3).

4) An initial estimation of the amplitudes A; and funda-
mental frequency w of the signal is done by minimizing
a least squares cost function, in the same way as in [6],
but on the newly calculated sampling moments. Mostly,
an initial estimation of the fundamental frequency can
be done visually by counting the number of peaks in the
signal.

For the reduced model, with N =N, s and w = w, the estimation
of initial values remains unchanged. In order to gather starting
values for the enlarged model, with N=Nand® =w-N /N,
a larger measurement window is created, consisting of the orig-
inal one, neighbored at the left by the ¢ last observations and at
the right by the ¢ first observations. The procedure will still in-
duce ringing and will thus not estimate the parameters correctly.
Regardless, the initial values seem to be sufficient to converge
toward a good set of parameters that minimize the cost function
(7). For both the reduced and enlarged model, steps 2) to 4) re-
main unaffected.

C. Advantages and Disadvantages of the Different Approaches

The main advantage of the polynomial model is that no
ringing occurs, but the numerical conditioning is worse than for
the other trigonometric base based models. Therefore, when
a detailed description of the TBD is desired and a lot of basis
functions are used, the trigonometric models may be preferred.
An extra feature of the trigonometric models is that they can
absorb an inaccurate estimation of the initial angular frequency,
because this would cause a linear trend in the TBD model.
The polynomial model cannot absorb this, because the linear
coefficient is not estimated. The linear coefficient 5 as defined
in (4) can be removed by changing the fundamental angular
frequency w to wy

w1 = w(l+ f). ©)

V. RESULTS OF STUDY BASED ON SIMULATION
A. Comparison of the Different Models

In this section a harmonic signal, distorted by a nonperiodic
TBD, is simulated. No additive noise was added in order to
concentrate on the systematic errors caused by ringing. First,
the polynomial model for the TBD is used. Next the trigono-
metric model is employed, without arrangements to reduce
ringing. Finally the reduced and enlarged model are used. These
different estimates for the TBD are compared, employing the
residual cost function as criterion. The harmonic signal is
constructed by a sinus with frequency 8 Hz on a grid of 100
samples ([1,..., N]/N, with N = 100). Because certain biota
have an exponentially decreasing growth rate [31], [32], an
exponential decreasing TBD was chosen in the simulation. The
offset and the linear trend were removed from the TBD

One harmonic is used to reconstruct the signal, while the
number of parameters used in the TBD model was 14, regard-
less of the model (trigonometric or polynomial). Fig. 4 shows
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Fig.4. The absolute error between the estimated TBD and the TBD used in the
simulation for (a) the Fourier model, (b) the polynomial model, (c) the reduced
Fourier model, and (d) the enlarged Fourier model.

the difference between the estimated and true TBD as well as
the original one. Comparison revealed the following.

1) The polynomial model (order 16, 14 coefficients) was able
to reconstruct the TBD with hardly any error. A residual
cost function of 4x 107 ¢ was found.

2) The Fourier model, without any arrangements against
the leakage converged toward a residual cost function of
1.2x102.

3) The reduced Fourier model, where 10% of the measure-
ments were not used to match the model, had a residual
cost function of 4x10™*. This value is already corrected
for the reduction of samples: because now only 90 sam-
ples were used to match the model, the cost function is
evidently lower [34]

N—ng

Kcorr Nt
' Ns — Ny

= Knls (10)

where K, is the residual cost function, /N the total
number of samples (here: 100), N the number of sam-
ples on which the model is matched (here 90), and ng
the number of model parameters (here 14+24-1). We can
conclude that the ringing contribution to the residual cost
function is reduced by a factor of 30, but at the cost of
removing ten samples and hence lack of knowledge of
the TBD at these points.

4) When each border was enlarged with 10% of the total
sample number (enlarged model), a residual cost function
of 2.8x107° is found, which is 14 times smaller than in
(3) and more than 400 times smaller than (2). The benefit
is that no samples were lost at the borders, but because the
total sample window is enlarged, the frequency resolution
increases, while the number of TBD parameters b remains
equal. Consequently, the bandwidth of the TBD model
becomes smaller (only the first lines were used).
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Fig. 5. The cost function as function of the number of extra samples at the

border. An optimum (“0”) is reached when the decrease, caused by reducing
the ringing, is compensated by an increase of the cost function, caused by the
decreasing bandwidth.

To conclude, the polynomial model of the TBD seems to be
better than the trigonometric one to expand to the TBD. In the
polynomial model, no systematic errors are present and no ar-
rangements against ringing are necessary. When the trigono-
metric model is used, without any arrangements, a significant
misfit is found due to ringing. The samples near the borders are
discarded, which reduces the residual cost function by a factor
30, but 10% of the measurements are lost. The alternative is to
enlarge the borders, while the model is still matched on the orig-
inal time window. The latter has a slightly better performance:
no samples are lost, the cost function is reduced by a factor 400,
but the bandwidth of the TBD model decreases proportionally
to the enlargement.

B. Optimal Size of the Extra Borders

If more lines are added at the borders, the ringing will become
smaller. On the other hand, the bandwidth of the TBD model
will decrease and this will cause a larger systematic error. So,
what is the optimal number of the extra samples at the borders?
A strategy is presented to find a rough estimate of the optimal
size [35]. To avoid long calculation time, the residual cost func-
tion is calculated for three possible enlargements of the borders.
A parabolic function is fitted to these three values and the min-
imum of this parabolic function is chosen as an optimal value
(for example, p = {1, 10, 20}). This procedure is illustrated on
the simulation presented in the previous paragraph and seems
to work well as long as the optimal value is between the initial
values. Fig. 5 shows the cost function as function of the border
size q. The optimal value for this case study is an enlargement of
26%, i.e., ¢ = 13 (the number of extra samples at each border).
The predicted values are distributed around this value with a
mean of 13.6 samples and a standard deviation of 1.7 samples,
depending on the chosen values of the enlargement. The actual
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Fig. 6. The vessel density, measured along a transect from pith to bark on a
mangrove stem disc, as function of the distance from the pith.

value depends slightly on the choice of the initial values, but the
value of the cost function hardly differs within the interval de-
fined by twice the standard deviation, as can be seen in Fig. 5.
A good choice of the enlargement parameter p can reduce the
cost function substantially: 60 dB in this simulation. In real ex-
amples, the systematic error caused by the limited bandwidth of
the TBD model can be more or less important. So, for each case
the enlargement parameter ¢ has to be estimated again. When
the bandwidth of the TBD model is increased by increasing the
parameter b in (3), the optimal value of ¢ has to be reestimated.
Estimating both parameters can be done by employing a model
selection criterion [37].

VI. REAL-WORLD APPLICATION

We now apply this procedure to a record of the vessel density
measured along a radius from pith to bark of a mangrove tree
from Kenya (R. mucronata). Vessel density may be related to
environmental parameters such as temperature and/or precipi-
tation! (see [9], [10], and [33]), we can therefore expect period-
icity in the signal, which is shown in Fig. 6. The data record is
170 samples long and covers approximately 15 years. Its spec-
trum is shown in Fig. 7, where we have assumed a constant
growth rate of 3.3 mm/y. The annual variation can be seen and
has been confirmed [36], but one can wonder if the biannual cli-
matic fluctuations present along the Kenyan coast (see method-
ology) are reflected in this signal. Growth rate variations make
an interpretation of the spectrum hard. For instance, one can
wonder what the second peak at 1.25 y~! could mean. In order
to give a correct interpretation of the spectrum, we have used
the TBD methodology.

A signal model consisting of three harmonics Ay with k& €
{1,2,3}, with a fundamental frequency of w = 2715 y~1, is

IThe beginning and ending of each season differs from year to year. These
variations can be described by time jitter [2], but this is not handled in this paper.
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Fig. 7. The spectrum of the vessel density, assuming a constant growth rate.

used; furthermore, the time base model employed 14 parame-
ters By with ! € {1,...,14}. This model complexity was deter-
mined following [37].

The residual cost function obtained from the Fourier model
for the TBD on the original data set is 2844 (no removal or addi-
tion of samples). The polynomial model with the same number
of coefficients gives a slightly better result, 2613. Employing the
reduced model, where 5% of the measurements were dropped
near each border (¢ = 5), decreases the residual cost functions
to 2387 [corrected by (10) for the loss of samples]. The enlarged
model, with the optimal value ¢ = 6, achieves a similar result:
2343. To conclude, ringing seems responsible for at least 17% of
the residual cost function. When ringing is treated, the Fourier
model seems to perform better than the polynomial model.

Comparing the different Fourier models (Fig. 8), (a), (c), and
(d) show that ringing causes a severe difference in the estima-
tion of the TBD, especially at the borders, e.g., at the left (c)
curves down and (a) curves up, whereas the opposite appears at
the right side. The general shape of (c) and (d) (Fourier model)
compared with (b) (polynomial model) is similar, although local
differences are present. Because of a lower cost function, the
Fourier models are preferred. Models (c) and (d), both Fourier
models without ringing, are very similar, except that (c) also es-
timates the TBD at the borders.

The objective of the construction of these time bases is the
comparison with environmental parameters (see [9] and [33] for
more details). In order to illustrate the method, the vessel den-
sity signal is compared with the maximum monthly temperature
(°C), monthly precipitation (mm), and mean monthly relative
humidity (Table I). Environmental data were obtained from the
Kenya Meteorological Department in Mombasa. The raw vessel
density data were interpolated on the newly reconstructed time
frame. When no time base correction was performed, the corre-
lation with environmental parameters was weak. The correlation
with the maximum temperature increases from 18% to typically
69% and from minus 28% to typically minus 62% with humidity
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Fig.9. The vessel density on a corrected time grid (full line) versus the relative
humidity (dotted line). To stress the anticorrelation between both, the relative
humidity scale was inverted.

when a time base correction is used. Without the time base cor-
rection, the misfit is largely due to misfits in the peak’s posi-
tion; with a time base correction, the remaining misfit is mainly
due to differences in the amplitude of the peaks (see Figs. 9 and
10). Comparison of the different TBD models in Table I shows
that the differences in correlation are too small to distinguish
between the different time base distortion models based on the
correlation with environmental parameters. When the different
environmental parameters are compared with the vessel density,
it follows that both temperature and humidity seem to correlate
reasonably well with the vessel density. The precipitation signal
is much less regular, which is reflected by the weak correlation
(see [9] and [33]).
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TABLE 1
THE CORRELATION COEFFICIENTS CHARACTERIZING THE CORRELATIONS
BETWEEN SEVERAL ENVIRONMENTAL PARAMETERS AND THE VESSEL
DENSITY, CONSTRUCTED ON DIFFERENT TIME BASES (THE DC COMPONENT
WAS REMOVED BEFORE THE CORRELATION COEFFICIENTS WERE CALCULATED)

Maximum | Precipitation | Relative
Temperature Humidity
Constant growth rate 18% 7% -28%
Polynomial T.B.D. model 62% 10% -56%
Fourier T.B.D. model 66% 12% -61%
with ringing
Fourier T.B.D. model 69% 9% -61%
with reduced borders
Fourier T.B.D. model 69% 10% -62%
with enlarged borders

VII. CONCLUSION

A time base distortion approach was used to reconstruct time
series, e.g., density in a mangrove tree. When a Fourier base
was used to model the time base distortion, it was biased due
to the Gibbs phenomenon. In order to circumvent this bias, two
adaptations were proposed. First, we used a polynomial model
for the time base distortion. Under certain circumstances, like
slowly varying growth rates, this model outperforms. However,
a disadvantage of the polynomial model is that it becomes ill
conditioned when the number of basis functions increases. On
the contrary, the Fourier series was still well conditioned. Sec-
ondly, we have adapted the model based on a Fourier basis by
employing a model window that is larger than the measure-
ment window. In these additional borders, ringing occurs. Next,
we delete these borders and thus most of the bias. The advan-
tage of enlarging the borders is that no samples are lost. The
disadvantage is that the bandwidth of the time base distortion
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model is smaller. Employing more parameters can remedy this
disadvantage.

In the simulation, an exponentially decreasing growth rate
was chosen and the Fourier basis with ringing, the polynomial
basis, and two Fourier models remedied for ringing were com-
pared. Therefore, we dropped some samples near the borders,
as advised in [2], and we enlarged the model window, as de-
scribed in this paper. Both solutions reduced the ringing con-
siderably, but in this simulation, the polynomial model outper-
formed. Which basis matches better depends upon the particular
growth rate, which is unknown. In our botanical example, the
Fourier model, remedied for ringing, matched better, resulting
in a lower cost function.

The procedures discussed in this paper are applicable to a
wide array of short periodic data records, from both temperate
and tropical regions, where all data points are critical. The work
of validating and or calibrating environmental proxies often en-
tails correlating short instrumental records (e.g., 2-10 y) with
accretionary records (e.g., speleothems, corals, sclerosponges,
mollusks) [14], [16], [21], [22], [31], [32]. Such work should
greatly benefit from the proposed procedure.
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