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1. Introduction

ABSTRACT

Spatial variations in carbon and nitrogen stable isotopes (33C and 3'°N) of benthic filter feeders were
investigated on an inshore-offshore gradient (0—250 km) along the continental shelf of the northern Bay
of Biscay (NE Atlantic Ocean). 3'3C and 8'°N values were measured in muscle tissues of four filter-feeding
mollusc species (epifaunal: Pecten maximus, Aequipecten opercularis; infaunal: Glycymeris glycymeris,
Venus casina) and in benthic particulate organic matter along a corresponding water-depth gradient from
6 to 220 m. All four species showed a decreasing pattern of muscle 3'>C and 8'°N values with increasing
depth. At the Ushant front (~130 m water depth), where there is a decrease in both bottom water
chlorophyll a and suspended particulate matter, muscle 3'3C and 3'°N values decreased in all species.
Although §'3C values of infaunal clams initially decreased at 30 m depth, 3'3C values of epifaunal scallops
decreased around 120 m depth, far below the expected depth reduction in microphytobenthic produc-
tion suggesting that carbon isotopes might not simply track microphytobenthic utilization. The differ-
ence between infaunal and epifaunal bivalve stable isotope values may reflect differences in feeding
strategies. Muscle 3'°N values at the deepest stations ( ~2¢,) were lower than expected considering the
typical trophic enrichment value of 3—4¢, between prey and consumers. These low 3'°N values may
result from low metabolic rates and suggest the classic trophic enrichment may not hold true in species
inhabiting deep waters. Stable isotopes in benthic filter feeders can reveal much information regarding
their ecology and environment, but are not straightforward recorders of stable isotope baseline varia-
tions as is often assumed.

© 2011 Elsevier Ltd. All rights reserved.

et al., 2002; Jennings and Warr, 2003). Stable carbon isotopes are
a powerful tool to differentiate energy fluxes from benthic or pelagic

Numerous studies in marine isotope ecology have demonstrated
the suitability of carbon (8'3C) and nitrogen isotopes (8'°N) in
benthic filter feeders for revealing trophic and ecosystem func-
tioning (e.g. Riera and Richard, 1996; Fry, 1999; Grall et al., 2006;
Mintenbeck et al., 2007; Lefebvre et al., 2009). Filter feeders are
assumed to be good candidates to delineate long-term processes
and changes in ecosystem trophic functioning because of their
sedentary nature and the relatively long turnover time (usually
several months or more) of C and N isotopes in their tissues (Lorrain
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production; typically benthic producers are enriched in >C when
compared to pelagic producers by an average of ~79%, (France,
1995). For example, Riera and Richard (1996) used carbon isotopes
to reveal that microphytobenthos and not phytoplankton were the
main food source of estuarine oysters. In addition, nitrogen stable
isotopes can indicate watershed influences on downstream
production (Fry, 2002) as anthropogenic wastewaters usually
elevate 3'°N of dissolved inorganic nitrogen, which then propagates
throughout the food web (Cabana and Rasmussen, 1996).
Continental shelves are an interesting but underutilized envi-
ronment to test pelagic benthic coupling and anthropogenic
nutrient inputs because they offer both depth and land-sea
gradients. Indeed, large depth gradients are present where
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microphytobenthos production ranges from high in shallow waters
to zero in deep waters (Maclntyre et al., 1996). Stable carbon
isotopes in benthic filter feeders can be used to check the assump-
tion that microphytobenthos have an important role in the diet of
coastal filter feeders by sampling the same species along this depth
gradient. Moreover, the land-sea gradient along the continental
shelf should lead to a dilution of anthropogenic nitrogen loading,
resulting in a decrease in the filter feeder 3'°N values going offshore.
Finally, differences in water mass structures (e.g., stratified or
mixed) can lead to differences in phytoplankton 33C and 3'°N
values (Fontugne and Duplessy, 1978; Mauna et al., 2010), which can
be recorded in filter feeder tissue (Fry, 1988; Iken et al., 2010). If filter
feeders do record these environmental structures, then their carbon
and nitrogen stable isotope values can be used to provide environ-
mental information, which is limited on continental shelves.

In this study, we investigated spatial variations in the C and N
stable isotope ratios of adductor muscle of four filter-feeding
bivalves (two epifaunal and two infaunal) along a depth gradient
from 6 to 220 m on the French continental shelf. We aimed to test
the hypotheses that (1) a reduction in microphytobenthos utiliza-
tion with depth is reflected in decreasing muscle 3'3C values; (2)
a difference in microphytobenthos utilization between species
related to their different modes of life (e.g., epi- or infaunal; cf. Grall
et al., 2006) will be indicated by different 8'3C values between
species; (3) physical and hydrological structures of the ecosystem
(water masses, currents, fronts) lead to differences in muscle C and
N stable isotope values, and (4) anthropogenic nitrogen loading
decreases with distance from land and result in decreasing muscle
315N values with depth.

2. Material and methods

Sampling followed a nearshore-offshore water depth gradient
(Fig. 1), from station 1 (6 m depth, 4°26’ W, 48°22' N) to station

14 at the edge of the continental shelf in the northern Bay of
Biscay (up to 220 m depth, 8°15 W, 48°12’ N), a distance of
250 km. Over this part of the continental shelf, the tidal wave
from the open Atlantic is largely amplified and is responsible for
the vertical mixing of the water column and the creation of
different water masses (Koutsikopoulos and LeCann, 1996; Lazure
et al.,, 2009). The Iroise front and Ushant front are two hydro-
logical structures created by this tidal mixing (Le Boyer et al.,
2009). From the coast to the Iroise front (see Fig. 1), the water
mass is shallow and well mixed. Between the Iroise and Ushant
fronts, the water column is also well mixed but is considerably
deeper. After the Ushant front, in the deepest area of the shelf, the
water column is stratified, and there is limited exchange between
the surface mixed layer and deep waters. At the shelf break, the
slope currents are responsible for strong vertical mixing and
nutrient input, creating suitable conditions for primary produc-
tion (Pingree et al., 1982).

Samples were collected during two scientific cruises in May and
September 2008. Previous work on Pecten maximus muscles at site
3 showed very small inter-annual variability (<1%,) in both 3'3C
and 8'°N values (Lorrain et al., 2002), therefore we did not expect
large differences between May and September sampling dates.
When possible, P. maximus, Aequipecten opercularis, Glycymeris
glycymeris, and Venus casina were collected at each station by
dredging (scallop dredge, 50 mm). The epifaunal P. maximus is
usually recessed in the sediment with the upper (left) valve level
with the substrate (see Brand et al.,, 2006) and A. opercularis is
a more mobile species which lies on top of the substratum
(Chapman et al., 1979), but can also be attached with a byssus
(Brand et al., 2006). The two infaunal species G. glycymeris and
V. casina both bury shallow in the sediment and filter water from
the overlying water column. (Ansell, 1962; Ansell and Trueman,
1967). Muscle tissues of bivalves were dissected and stored
frozen. Muscle tissues were chosen due to the relatively long
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Fig. 1. Map of the study area in northern Bay of Biscay showing bathymetry, position of sample stations (black circles, 1-14), and the position of the Iroise and Ushant fronts.
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metabolic turn over time of this tissue (Lorrain et al., 2002; Paulet
et al,, 2006; Hill and McQuaid, 2009). Muscles were then freeze-
dried, ground into powder, and weighed in tin cups for isotopic
analysis (about 250 pg in 4 x 6 mm tin cups). 3'3C and 3°N were
measured at the University of New Brunswick (Canada) using
a Costech 4010 elemental analyzer coupled to either a Finnigan
Delta Plus or a Finnigan Delta Plus XP mass spectrometer.
Seawater was sampled at the same stations, 1 m above the
sediment using a Niskin bottle to collect particulate organic matter
(POM) for determination of suspended particulate matter concen-
tration (SPM), chlorophyll a concentration (Chl a), C/N ratios and C
and N stable isotope analysis. For SPM, seawater was filtered
through pre-combusted and pre-weighed GF/F Whatman filters
(47 mm); filters were rinsed with distilled water to dissolve sea-salt
and were stored frozen. SPM filters where then oven-dried (60 °C,
48 h) and weighed again; SPM was only sampled during the
September cruise. For Chl a concentration, seawater was filtered
through GF/F Whatman filters (47 mm), rinsed with filtered
seawater and stored frozen. Chl a was extracted with acetone (4 °C,
overnight, rotating mixing) and measured with a fluorometer (10-
AU Turner Design). POM samples were processed following Lorrain
etal.(2003), and 3'3C and 5"°N values of POM were measured in the
LIENSs laboratory (La Rochelle, France) using a Thermo Scientific

Delta V Advantage mass spectrometer and a Thermo Scientific Flash
EA1112 elemental analyzer. 3'3C of dissolved inorganic carbon
(33Cpic) was also sampled in May and analyzed at the Vrije Uni-
versiteit Brussel following Gillikin and Bouillon (2007). Results are
expressed in standard & notation based on international standards
(Vienna Pee Dee Belemnite for '3C and N; in air for 3'> N) following
the equation: 8'3C or 8" N= [(Rsample/Rstandard) — 1] % 103 (in %),
where R is 3C/1?C or N/™N. Analytical precision based on
repeated analysis of acetanilide (Thermo Scientific) was <0.159%, for
both carbon and nitrogen.

All data were log-transformed to match normality and variance
homogeneity. Rank of 3'3C and 3'°N values of the four species
were tested at each site with a Kruskall-Wallis test on species
ranks.

3. Results

All bivalves showed the same pattern of decreasing isotopic
values with water depth from the coast to the shelf break (Fig. 2).
Average d'°C values ranged from —15940.2%, at station 1
to —19.0 & 0.2, at the deepest stations (a 3.5%, decrease), and 3'°N
values varied from 9.4 + 0.3%, to 2.8 + 0.4%,, representing a decline
of 6.6%, (Fig. 2). The pattern of muscle 8'3C and 3"°N values with
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Fig. 2. Muscle 3'3C (left) and 3'°N (right) values along the water depth gradient for both cruises (May and September 2008). Stations 1 to 3 are within the Bay of Brest, and stations 4
to 14 ranged from 7 to 250 Km off shore (see Fig. 1). Dashed lines represent the approximate position of the fronts.
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water depth showed a strong decrease between station 6 and
station 7, at a ~120 m water depth.

Across the depth gradient, we observed a significant ranking of
species 3'3C values from station 3 to 10 (Kruskal—Wallis test on
species ranks: p < 0.03; Fig. 3): Pecten maximus had higher 3'3C
values than the other species, and at deep water stations, Aequi-
pecten opercularis had higher 3!3C values than Glycymeris glycy-
meris and Venus casina. G. glycymeris and V. casina had variable 3'3C
rank positions. There was also a significant rank in 8'°N values for
the four species from station 1 to 8 and at station 11 (Krus-
kal—Wallis test on species ranks: p <0.016): V. casina had the
highest 3'°N values (up to 8.5 = 0.3%,), followed by P. maximus and/
or G. glycymeris, with A. opercularis having the lowest values.

The isotopic values of bottom water POM were variable and did
not show a clear trend with water depth (Fig. 4). The overall 3'3C
values ranged from —18.2%, to —24.5%, while 3'°N values ranged
between 4.79,and 8.5%,. C/N ratios of POM showed an increase from
4.6 to 7.2 with increasing water depth (Fig. 5A). Chl a concentrations
decreased with water depth, from 2.9 pgL~! to below detection
limit (Fig. 5A). SPM concentrations in bottom water in September
(Fig. 5B) also showed a decrease from 148.0 to 10.3 mgL~! with

water depth. 313Cpc values were not significantly different between
sites and averaged 0.96 + 0.15%, (data not shown).

4. Discussion

In the shallow well-mixed waters of the Bay of Brest, the euphotic
zone extends to the bottom, allowing microphytobenthos primary
production, which accounts for 12—20% of total primary production
(Longphuirt et al., 2007) and has been suggested to be a major food
source for benthic bivalves (Lorrain et al., 2002; Grall et al., 2006).
Microphytobenthos typically have a 3'3C value of —16%, (France,
1995; Kang et al, 1999; Riera et al., 1999; Kharlamenko et al.,
2008), while phytoplankton is often assumed to be approximately
18—229, lighter than 83Cpc (e.g. Cai et al., 1988; Fry, 2002).
Therefore, we were expecting a shift in the filter feeder 3'>C values
(from high to low values) beyond the light extinction zone situated
here at about 30 m depth (Le Boyer et al., 2009).

Our results show a consistent pattern of decreasing 8'3C values
with increasing depth for the four species considered. However,
although Venus casina and Glycymeris glycymeris 8'3C values fol-
lowed the expected trend (decreasing at 30 m), Pecten maximus and
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Fig. 3. Average muscle 3'>C and 5'>N values (+SE) along the water depth gradient illustrating the ranking of the species at each station (see Fig. 1 for location of stations). Dashed
lines represent the approximate position of the fronts.
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Aequipecten opercularis 3'3C values decreased around 120 m
(Fig. 2), far below the expected depth reduction in micro-
phytobenthic production (Maclntyre et al., 1996). Therefore, high
3'13C values of shallow consumers may not simply be attributable to
microphytobenthos  consumption.  Similarly, Nadon and
Himmelman (2006) urged caution in interpreting 83C values to
reflect microphytobenthic sources. In a similar study, Fry (1988)
recorded a depth-related decrease of 1.2%, in scallop (Placopecten
magellanicus) 3'3C values (—16.8 to —18%,) on the Georges Bank
(0—160 m), and hypothesized that it reflected a landward gradient
in phytoplankton productivity; with high productivity in shallow
waters drawing down '2C and enriching DIC, and thus phyto-
plankton, in 3C. If differences in productivity were causing the
difference in 5'3C values in our bivalves then the DIC would also
have showed this difference, but 613CDIC over the entire depth
gradient was constant (0.96 + 0.15%,) and has been shown to vary
only ~19%, throughout the year in the Bay of Brest (Lorrain et al.,
2004). Moreover, we found a much larger decrease in 3'>C values
for both G. glycymeris and P. maximus (up to 2.7%,) than would be
expected from a productivity signal. This provides strong evidence
that differences in productivity are not what is driving the changes
in bivalve 8'3C values along this depth gradient.

Further evidence that 3'3C values do not simply record micro-
phytobenthos utilization can be seen in the ranking of 3'3C values
between species (Fig. 3). For example, considering that Glycymeris
glycymeris is showing the expected pattern with a 3'°C decrease
after 40 m depth (and possibly Venus casina, but we do not have
data for this species between 15 and 78 m), it could be argued that
this is the only of these species feeding on microphytobenthos.
If this were the case, G. glycymeris should have the highest 5'3C
values at shallow water sites compared to the other species.
However, Pecten maximus had the highest 3!3C values and not
G. glycymeris, which is contradictory to 3'3C values reflecting
microphytobenthos utilization. Moreover, this same ranking is also
observed at deep stations, below the euphotic zone. We expected
the muscle isotopic values of the four bivalve species to become
more similar offshore, as microphytobenthos growth is inhibited in
aphotic deep water and the available food source is presumably
limited to sinking pelagic phytoplankton. Because this 8'3C ranking
was maintained across the depth gradient, it might arguably reflect
a similar diet with different muscle 3'3C enrichment factors (Post,
2002; Vanderklift and Ponsard, 2003), or different metabolic
tissue turnover times among species (Paulet et al., 2006). Studying
only one species, such as G. glycymeris, would have incorrectly
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confirmed the power of carbon isotopes to detect micro-
phytobenthic contribution to bivalve diets. This study therefore
illustrates the necessity for multi-species studies to reveal large
scale trophic functioning.

Explaining the differences in 3'3C values between stations and
between species is not straightforward. POM 83C values do
approximately show a decreasing 3'3C pattern with depth (Fig. 4),
which could be interpreted as the driver of the decreasing tissue
313C pattern (Fig. 3). POM, however, is a mixture of different sources
of carbon and it is well known that bivalves select specific
components of this carbon pool (Ward and Shumway, 2004). For
example, Fry (2002) was able to match 8'3Cp;c and bivalve tissue
313C values and Gillikin et al. (2006) found a 1:1 relationship
between 3'>Cpc and bivalve tissue 3'>C values, but not between
POM §'3C values and bivalve tissue 3'3C values. Therefore POM does
not equate to what the bivalves are assimilating.

Chl a, SPM and C/N ratios can provide an indication of food
abundance and quality. As Chl a is a proxy of phytoplankton
biomass, it is a good proxy of quality food availability (e.g. Bacon
et al., 1998). SPM on the other hand can include various other low
quality particles and even inorganic sediments. The C/N ratio can
also provide insight to the quality of the available particles, with
phytoplankton having a theoretical C/N ratio of 5.7 (Redfield et al.,
1963). The C/N ratio in our deeper stations is around 7, which could

imply lower quality particles, but phytoplankton can have variable
C/N ratios (e.g. Burkhardt et al., 1999), so this value is not neces-
sarily evidence of poor food quality. Nevertheless, the higher SPM
(see Fig. 4B) and Chl a (0.41 +0.05 vs. 0.10 + 0.09 pg/L; p=0.01) at
stations 6 to 8 compared to deeper stations could explain the
differences we see between 3'3C values in epifaunal scallops and
infaunal clams. Several authors have noted differences in selectivity
between infaunal and epifaunal filter feeding bivalves (e.g. Bacon
et al.,, 1998; Hawkins et al., 1998). Perhaps the infaunal clams are
better at selecting phytoplankton from the SPM pool (cf. Bacon
et al.,, 1998), which results in their tissues reflecting the expected
313C value of pelagic phytoplankton (roughly —192%,), while scallops
rely more on lower quality organic matter derived from the coastal
zone. This lower quality organic matter is likely to be out-welled
macroalgae detritus (macrophyte-derived particulate organic
matter). Macroalgae constitutes a large component of primary
production in this area (e.g., Arzel, 1998; Schaal et al., 2010; Gollety
etal.,, 2011), can be a significant part of bivalve diets (see Arambalza
et al., 2010 for review), and has '3C enriched isotope values (e.g.,
Schaal et al., 2010), which could explain the enriched '3C values in
scallops between the Iroise and Ushant fronts. Macroalgae detritus
has been suggested to be an important food source for intertidal
mussels (Hill et al., 2006, 2008), but we hypothesize that it can also
contribute to bivalve diets as far as 50 km offshore in 120 m water
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depth. After the Ushant Front, when both SPM and Chl a values are
low (Fig. 5), 8'3C values of both epifaunal and infaunal bivalves drop
to the expected values, but still maintain the same ranking, with
scallops being the most '3C enriched (Fig. 3). On the other hand,
3PN values suggest that the infaunal clams are feeding on degraded
15N enriched organic matter (see Mintenbeck et al., 2007; Trull
et al, 2008) or are including microzooplankton in their diet
resulting in a °N trophic enrichment (see Bode et al., 2006). Little is
known about the feeding selectivity or diets of these species, but
our results suggest they could be complex.

We found a clear decrease in muscle 3'°N values from inshore to
offshore stations (Fig. 2), probably reflecting a decreasing anthro-
pogenic input. Although the Bay of Brest is not defined as truly
eutrophic because its strong tidal currents dilute the increasing
terrestrial inputs of anthropogenic origin (Chauvaud et al., 2000),
major signs of benthic eutrophication have been reported (Grall
and Glémarec, 1997), and eutrophication is generally associated
with high 8'°N values for organic matter (Cabana and Rasmussen,
1996; McClelland et al., 1997). Indeed, we observe elevated 8'°N
values in bivalve muscles from inshore stations (from ~9 to 12%,;
Fig. 2), similar to reported values in other urbanized coastal areas
(Jennings and Warr, 2003; Nadon and Himmelman, 2010).
However, the bivalves in the deepest waters had unusually low 3'°N
values. Most large scale studies report a decrease of 3'°N muscle
values when going offshore, with values in deepest sites of ~59%,
(105 m, Jennings and Warr, 2003; 143 m, Le Loc’h et al., 2008),
while offshore values in our study are surprisingly much lower
(2.8%, at 190 m depth). Considering the typical 3 to 4%, trophic °N
enrichment between prey and consumers (DeNiro and Epstein,
1981; Vander Zanden and Rasmussen, 1999), the low 3'°N values
in our study would imply a trophic source with a 3N value that
was close to 0%, or even negative, which is typical of diazotrophic
producers in oligotrophic areas (Lourey et al., 2003), while the Bay
of Biscay continental shelf is a highly productive area (Varela et al.,
2006). Physical parameters such as the cold and constant temper-
ature of bottom water (~12 °C in the Bay of Biscay) and the low
food quantity may be responsible for major metabolic changes in
deep water organisms, such as reduced growth rate (Turekian et al.,
1975; Buick and Ivany, 2004), respiration (Smith and Teal, 1973),
and reproduction (Peck et al., 2007). These metabolic changes could
modify classical trophic isotope enrichment factors between food
sources and the muscles of bivalves at the deepest stations
(depth > 120 m). It is possible that the slow metabolism at depth
could result in low N excretion and little to no isotopic fractionation
(see Fry, 2006 for a discussion on N excretion and fractionation).
This hypothesis should be further explored because it calls into
question the use of bivalves as integrators of temporal variations of
isotopic values of primary producers (isotopic baseline), as several
authors have proposed (Post, 2002; Jennings and Warr, 2003).

Finally, there has been a recent interest to use stable isotope
values in consumer tissues to differentiate water masses. For
example, Iken et al. (2010) found significant differences in benthic
food web stable isotope values between water masses in the
southern Chucksi Sea. Similarly, Mauna et al. (2010) reported
different 3'3C values in the Patagonian scallop (Zygochlamys pata-
gonica) according to the position on the Argentine shelf break front.
Our study showed four discrete water masses are present
(Koutsikopoulos and LeCann, 1996; Reffray et al., 2008; Muller et al.,
2009), but are not all marked by significant differences in bivalve
stable isotope values (Fig. 3). The most evident isotopic shift is
observed at the Ushant front (~120 m depth) which separates
mixed and stratified water and where there is a large change in SPM
and Chl a (Fig. 5). All four species exhibit an abrupt change in both
carbon and nitrogen isotope values whereas the other water mass
boundaries show little or no isotopic shift (Figs. 2 and 3).

5. Conclusions

Four species sampled over a large depth gradient all show
a decrease in muscle 3'3C and 3'°N values with depth, but only
some show this change where microphytobenthos abundance
should decrease. Therefore, 83C values do not reflect micro-
phytobenthos utilization alone. There were however similarities in
313C values among epifaunal and infaunal species, with epifaunal
species following the expected trend of benthic vs. pelagic
consumption. Moreover epifaunal species typically had the most
13C enriched and the most >N depleted tissues indicating different
diets or particle selectivity. However, despite four discrete water
masses, only one major shift was observable in the tissue stable
isotopes, indicating that delimiting water masses using stable
isotopes in filter feeder tissues is not straightforward. The decrease
in 3N values with distance from land is likely a result of the
dilution of anthropogenic N inputs from land, but the deepest 3'°N
values were much lower than expected. These low 3N values
suggest the classic 3 to 4%, trophic enrichment may not hold true in
species inhabiting deep waters.
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