INTERNATIONAL TRADE IN THE PRESENCE OF ECONOMIES OF SCALE AND IMPERFECT COMPETITION

The Theory of Imperfect Competition: A Review

1. Monopoly

Demand curve $\quad Q=A-B \times P$
Marginal Revenue
$M R=P-Q / B \quad \rightarrow \quad P-M R=Q / B$ [see Appendix]
Total costs

$$
\begin{equation*}
C=F+c \times Q \tag{2}
\end{equation*}
$$

Average cost

$$
A C=C / Q=F / Q+c
$$

2. Monopolistic Competition

Demand curve facing a firm $\quad Q=S \times[1 / n-b \times(P-\bar{P})]$
2.1 The number of firms and average cost: In equilibrium, when $P=\bar{P}$, from (5) we have

$$
\begin{equation*}
Q=S / n \tag{6}
\end{equation*}
$$

Therefore, from (4)

$$
\begin{equation*}
A C=F / Q+c=n \times(F / S)+c \tag{7}
\end{equation*}
$$

2.2 The number of firms and the price: Each firm treats \bar{P} as given, therefore from (5),

$$
\begin{equation*}
Q=(S / n+S \times b \times \bar{P})-S \times b \times P \tag{8}
\end{equation*}
$$

Compare (8) with (1), and look at (2). Therefore, the $M R$ for a typical firm is,

$$
\begin{equation*}
M R=P-Q /(S \times b) \tag{9}
\end{equation*}
$$

For a profit-maximizing firm we have,

$$
\begin{equation*}
M R=P-Q /(S \times b)=c \tag{10}
\end{equation*}
$$

Therefore, the price charged by a typical firm is:

$$
\begin{equation*}
P=c+Q /(S \times b) \tag{11}
\end{equation*}
$$

If all firms charge the same price, from (6) we see that $Q=S / n$. Therefore, (11) becomes,

$$
\begin{equation*}
P=c+\frac{1}{b n} \tag{12}
\end{equation*}
$$

2.3 The equilibrium number of firms

The equilibrium price and quantity is represented by point E in the graph below.

2.4 A Numerical Example

Let $S_{1}=450$, and $S_{2}=128$, where S_{1} stands for total sales of a particular industry (say, soft drinks) in one country (say the U.S.), and S_{2} stands for the total sales of the same industry in another country (say Canada). Also, let $F=400$, and $b=1 / 200$, for any firm in this industry in either country.

Now, we know that in equilibrium in the case of monopolistic competition $P=A C$. From (7) and (12) above we get:

$$
\begin{equation*}
c+\frac{1}{b n}=n \frac{F}{S}+c \tag{13}
\end{equation*}
$$

When we solve the above for n we get:

$$
\begin{equation*}
n=\sqrt{\frac{S}{b F}} \tag{14}
\end{equation*}
$$

Now, here is the situation, for each country, before trade (plug in the appropriate numbers in each case): [Assume that $c=80$.]

	U.S.	Canada
Equilibrium n	15	8
Market share (S / n)	30	16
Price	93.33	105.00

The situation after these two countries= markets are integrated; that is, after we set $S=S_{1}+S_{2}$ is:

	Integrated market
Equilibrium n	17
Market share	34
Price	91.76

Note that as a result of integration consumers in both countries gain.

Appendix: Derivation of (2).
Re-write (1) as:

$$
\begin{equation*}
B P=A-Q \tag{A1}
\end{equation*}
$$

Isolating P we get:

$$
\begin{equation*}
P=\frac{A}{B}-\frac{Q}{B} . \tag{A2}
\end{equation*}
$$

Write the formula for Total Revenue (TR):

$$
\begin{equation*}
T R=\frac{A}{B} Q-\frac{Q^{2}}{B} . \tag{A3}
\end{equation*}
$$

Taking the derivative of $T R$ with respect to Q we get:

$$
\begin{equation*}
M R=\frac{A}{B}-2 \frac{Q}{B} . \tag{A4}
\end{equation*}
$$

Substituting from (A2) into (A4) for $\frac{A}{B}-\frac{Q}{B}$ we get:

$$
\begin{equation*}
M R=P-\frac{Q}{B} . \tag{A5}
\end{equation*}
$$

Now go back to (2) above.

