The Nucleus

• Z, N, A, isotopes
• Nucleons, mass
• Radius $R = r_o A^{1/3}$
• Nuclear density
• Nuclear magnetic moments
Nuclear Stability

Up to A~40, N ~ Z

Beyond that N>Z

shielding Coulomb repulsion

^{238}U is largest naturally occurring nuclide
Binding Energy per Nucleon

- For X splitting to R + S:
 \[B = [m(R) + m(S) - m(X)]c^2 \]
Proton & Neutron E levels

\[^{12}_6\text{C} \]
Stable

\[^{13}_6\text{C} \]
Stable

\[^{15}_7\text{N} \]
Unstable

\[^{16}_6\text{C} \]
Unstable

\[^{14}_7\text{N} \]
Stable

\[^{15}_7\text{N} \]
Stable

\[^{15}_8\text{O} \]
Unstable

\[^{16}_8\text{O} \]
Stable
Activity & Half Life

• Activity = \(R = -\frac{dN}{dt} \)
• Unit = 1 decay/s = 1 becquerel (Bq)
 also 1 Curie (Ci) = \(3.7 \times 10^{10} \) Bq
• \(R = \lambda N(t) = -\frac{dN}{dt} \), so \(\frac{dN}{N} = -\lambda dt \)
 or \(N(t) = N_0 e^{-\lambda t} = N_0 e^{-t/\tau} \), where \(\tau = \frac{1}{\lambda} \) --
 also \(R(t) = R_0 e^{-\lambda t} \), where \(R_0 = \lambda N_0 \)
• \(N(t = t_{1/2}) = N_0 / 2 = N_0 e^{-\lambda t_{1/2}} \)
 so \(t_{1/2} = \ln(2)/\lambda = 0.693/\lambda = 0.693\tau \)
Half Life and Radioactive Decay

\[N(t) = N_0 e^{-\lambda t} \]
Alpher, Bethe, Gamow

- Radioactivity reactions must satisfy all conservation laws (E, p, L, etc., plus, all lower E (<100MeV) conservation of nucleons (A)
- Parent nuclide \rightarrow Daughter + small fragment
 Cons of E: $M(X) = M(D) + M_y + \frac{Q}{c^2}$
 where $Q =$ disintegration energy; $Q = -B$; $Q > 0$ unstable
- Three types of radiation: α, β, γ
- Alpha decay: $^A_ZX \rightarrow ^{A-4}_{Z-2}D + \alpha$ where $\alpha = ^4_2He$
 α gets most of the KE since it is so much lighter
Tunneling

- Higher E means shorter lifetime
Half-lives for alpha decay
Beta Decay

Beta decay: \(n \rightarrow p + \beta^- + \text{neutrino} \)

e.g. \(^{14}\text{C} \rightarrow ^{14}\text{N} + \beta^- + \text{neutrino} \)

- Neutrino not detected, but conservation laws demanded it – first predicted by Pauli in 1930, but not detected till 1956

- Also positron decay: \(^A_ZX \rightarrow ^A_{Z-1}D + \beta^+ + \nu \)
Example decay scheme

- Alpha decay shifts N,Z and often ends up further off line of stability – resulting in beta decay
Table 12.3 The Four Radioactive Series

<table>
<thead>
<tr>
<th>Mass Numbers</th>
<th>Series Name</th>
<th>Parent</th>
<th>$t_{1/2}$ (y)</th>
<th>End Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4n$</td>
<td>Thorium</td>
<td>$^{232}_{90}\text{Th}$</td>
<td>1.40×10^{10}</td>
<td>$^{208}_{82}\text{Pb}$</td>
</tr>
<tr>
<td>$4n + 1$</td>
<td>Neptunium</td>
<td>$^{237}_{93}\text{Np}$</td>
<td>2.14×10^{6}</td>
<td>$^{209}_{83}\text{Bi}$</td>
</tr>
<tr>
<td>$4n + 2$</td>
<td>Uranium</td>
<td>$^{238}_{92}\text{U}$</td>
<td>4.47×10^{9}</td>
<td>$^{206}_{82}\text{Pb}$</td>
</tr>
<tr>
<td>$4n + 3$</td>
<td>Actinium</td>
<td>$^{235}_{92}\text{U}$</td>
<td>7.04×10^{8}</td>
<td>$^{207}_{82}\text{Pb}$</td>
</tr>
</tbody>
</table>
14C decay & Radioactive Dating

- $n + ^{14}N \rightarrow ^{14}C + p$

Cosmic rays produce neutrons

Neutrons interact with ^{14}N to produce ^{14}C

^{14}C makes CO$_2$ with two ^{16}O atoms

Plants and animals use or breathe CO$_2$

When an organism dies, the ratio of $^{13}C/^{12}C$ decreases.

© 2006 Brooks/Cole - Thomson
Fuels & Power Plants

Table 13.1 Energy Content of Fuels

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
<th>Energy (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>1 kg</td>
<td>3×10^7</td>
</tr>
<tr>
<td>Oil</td>
<td>1 barrel (0.16 m3)</td>
<td>6×10^9</td>
</tr>
<tr>
<td>Natural gas</td>
<td>1 ft3 (0.028 m3)</td>
<td>10^6</td>
</tr>
<tr>
<td>Wood</td>
<td>1 kg</td>
<td>10^7</td>
</tr>
<tr>
<td>Gasoline</td>
<td>1 gallon (0.0038 m3)</td>
<td>10^{10}</td>
</tr>
<tr>
<td>Uranium (fission)</td>
<td>1 kg</td>
<td>10^{14}</td>
</tr>
<tr>
<td>Uranium (fusion)</td>
<td>1 kg</td>
<td>2×10^{14}</td>
</tr>
</tbody>
</table>

Table 13.2 Daily Fuel Requirements for 1000-MWe Power Plant

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>8×10^6 kg</td>
</tr>
<tr>
<td>Oil</td>
<td>40,000 barrels (6400 m3)</td>
</tr>
<tr>
<td>Natural gas</td>
<td>2.5×10^6 ft3 (7.1 $\times 10^4$ m3)</td>
</tr>
<tr>
<td>Uranium</td>
<td>3 kg</td>
</tr>
</tbody>
</table>
Binding Energy per Nucleon

- Review
Fission

- Liquid drop model of nucleus – as sphere distorts, larger surface energy – less well shielded Coulomb repulsion – overcomes fission barrier – spontaneous fission if $Z^2/A \geq 49$
- To be useful, fission must be induced – usually by slow neutron absorption (use moderator [water, graphite or beryllium] to slow n) to a highly excited compound nucleus – products have a N/Z ratio that is too high and 2 – 3 neutrons are emitted during fission
- These can be used to produce a self-sustaining chain reaction – if just 1 n on average then critical (vs. sub-critical or super-critical = bomb)
- Neutron control via control rods [cadmium] that absorb n
- ^{235}U absorbs thermal n better – need to enrich it (0.7% natural)
• BWR (Boiling Water Reactor) – danger that water can become contaminated
Alternate PWR

• Pressurized Water Reactor –
• Highest use of nuclear power: Lithuania (82%), France (77%), Belgium (60%) – in US (20%)
Progress on Fusion

• Stellar process
• Best reaction is $^{2}\text{H} + ^{3}\text{H} \rightarrow \text{n} + ^{4}\text{He}$
 $Q=17.6\text{MeV}$
• Enough ^{2}H for billions of years in sea water

3 Requirements for Fusion:

1. High T – 1-200 million K
2. High Density – 2-3x1020 ions/m3
3. Sufficient confinement time – 1-2 s

Lawson criterion:
$nt \geq 3x10^{20} \text{ s/m}^3$

Two schemes: MCF & ICF
MCF - Tokamaks
MC Fusion Power Plant of the Future?
Laser Fusion

- NIF (National Ignition Facility – Livermore)
Advertisement

• April 23 – 24 (Friday/Saturday) at Union – meeting of the NY State and New England Sections of the American Physical Society
Modern Nuclear Applications: Medicine, Power and non-Proliferation
Help out at meeting and hear about the latest